\(|2014-x|+|2015-x|+|2016-x|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

\(\left(x-1\right)^2-5\ge-5=>min=-5<=>\left(x-1\right)^2=0=>x-1=0=>x=1\)

vay GTNN la -5 tai x=1

30 tháng 3 2018

\(P=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

    \(=\left(\left|x-2015\right|+\left|x-2017\right|\right)+\left|x-2016\right|\)

     \(=\left(\left|x-2015\right|+\left|2017-x\right|\right)+\left|x-2016\right|\)

      \(=\left|x-2015+2017-x\right|+\left|x-2016\right|\)

       \(=2+ \left|x-2016\right|\)

Vì \(\left|x-2016\right|\ge0\left(\forall x\in Z\right)\Rightarrow2+\left|x-2016\right|\ge2\)

Dấu "=" xảy ra khi (x-2015).(2017-x) >= 0 và x - 2016 = 0

                                                              <=> x = 2016

Vậy Pmin = 2 khi x = 2016

30 tháng 3 2018

mk ko viết lại đề

P= |x-2015|+|x-2016|+|2017-x|

\(\ge\)\(\left|x-2105+2017-x\right|+\left|x-2016\right|\) 

=\(\left|2\right|+\left|x-2016\right|=2+\left|x-2016\right|\)

Do |x-2016|\(\ge0\)=> \(2+\left|x-2016\right|\ge2\)

dấu "=" xảy ra khi (x-2015).(2017-x)\(\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le2017\end{cases}\Rightarrow2015\le x\le2017}\)

Vậy GTNN của P=2  \(\Leftrightarrow2015\le x\le2017\)

8 tháng 4 2018

Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x

\(\left|2015-x\right|\ge0\)với mọi giá trị của x

\(\left|2016-x\right|\ge0\)với mọi giá trị của x

=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x

=> GTNN của A là 0.

8 tháng 4 2018

Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2

Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0

TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0

=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )

TH2: Làm tương tự => loại

Có I 2015 -x I \(\ge\)

Dấu = xảy ra khi x = 2015

Vậy A min = 2 khi x = 2015

24 tháng 10 2016

để A có GTNN 

thì 2014 - | x-2015 | lớn nhất

mà | x-2015 | >= 0

=> 2014-| x-2015 | lớn nhất khi | x-2015 | = 0

=> x=2015   <=> A = 1008/1007

24 tháng 10 2016

A = 2016 / 2014−|x−2015|  

Hãy tìm GTNN của biểu thức A

Để A có GTNN 

Thì 2014 - | x-2015 | lớn nhất

Mà | x-2015 | >= 0

=> 2014-| x-2015 | lớn nhất khi | x-2015 | = 0

=> x=2015

  <=> A = 1008/1007

\(x^{2016}-x^{2014}=0\)

\(\Rightarrow x^{2014}.\left(x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2=1\\x^{2014}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}}\)

Vậy nghiệm của đa thức là 1,-1,0 

10 tháng 3 2019

\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(\Leftrightarrow A=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)

\(\Leftrightarrow A\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)

\(\Leftrightarrow A=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)x = 2015

Vậy GTNN của A = 2 tại x = 2015

10 tháng 3 2019

\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(\ge x-2014+0+2016-x=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2014\\x=2015\\x\le2016\end{cases}}\Leftrightarrow x=2015\) (thỏa mãn đồng thời cả ba trường hợp)

25 tháng 9 2018

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

25 tháng 9 2018

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016