K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

B = x2 - 2ax + a+ x2 - 2bx + b2 + x2 - 2cx + c2

= 3x2 - 2(a + b + c)x + a2 + b2 + c2

= 3\(\left(x-\frac{a+b+c}{3}\right)^2\)- \(\frac{\left(a+b+c\right)^2}{3}\) + a2 + b2 + c2

B đạt min khi x = \(\frac{a+b+c}{3}\)

Thay x = \(\frac{a+b+c}{3}\)vào B

MinB\(\left(\frac{a+b+c-3a}{3}\right)^2\)+ \(\left(\frac{a+b+c-3b}{3}\right)^2\) + \(\left(\frac{a+b+c-3c}{3}\right)^2\)

\(\left(\frac{b+c-2a}{3}\right)^2\)+ \(\left(\frac{a+c-2b}{3}\right)^2\) + \(\left(\frac{a+b-2c}{3}\right)^2\)

22 tháng 5 2017

Chỗ này mình làm hơi rối

B = \(3\left(x-\frac{a+b+c}{3}\right)^2-\frac{\left(a+b+c\right)^2}{3}\)+ a2 + b2 + c2

B đạt min khi x = (a + b + c)/3

MinB = a2 + b2 + c2\(\frac{\left(a+b+c\right)^2}{3}\)

22 tháng 8 2015

C=[(x+1)(x-6)][(x-2)(x-3)]

=(x2-5x-6)(x2-5x+6)

=(x2-5x)2-36>=-36

GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5

18 tháng 6 2016

B=(x-3)2+(x-11)2

  =x2-6x+9+x2-22x+121

  =2x2-28x+130

  =2(x2-14x+65)

  =2(x2-2.7x+72-72+65)

  =2[(x-7)2-49+65]

  =2(x-7)2+32

=> vì 2(x-7)2 >= 0 

=>2(x-7)2+32 >= 32

=> GTNN của B=32. Khi x=7

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

6 tháng 6 2016

Bạn xem lại bài 1 đi:Đề phải là tìm GTLN chứ

2a:

Ta có:\(a^2+b^2+c^2=ab+ac+bc\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Vì \(\left(a-b\right)^2;\left(a-c\right)^2;\left(b-c\right)^2\ge0\) nên \(\left(a-b\right)^2=\left(a-c\right)^2=\left(b-c\right)^2=0\Leftrightarrow a=b=c\)

13 tháng 6 2016

1b.
x^2 - x - 8
= [x^2 - 2.x.7/2 + (7/2)^2 ] - 17/4 
=(x- 7/2)^2 - 17/4 
vì (x- 7/2)^2 > hoặc = 0 
=> (x- 7/2)^2 - 17/4 > hoặc = -17/4 
dấu = xảy ra khi (x- 7/2)^2 = 0
=> x = 7/2 
vậy GTNN P(x) = -17/4 khi x = 7/2 

21 tháng 4 2018
P=1+a/b+a/c+b/a+1+b/c+c/a+c/b+1 =(a/b+b/a)+(b/c+c/a)+(a/c+c/a)+3 Áp dụng bất đẳng thức Côsi ta có P>=2+2+2+3 P)>=9 khi và chỉ khi a=b=c Quay giá trị nhỏ nhất của p = 9 khi a bằng b bằng c
21 tháng 4 2018

a, \(P=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng bdt Cô-si ta có: \(P\ge3+2+2+2=9\)

Dấu "=" xảy ra khi \(a=b=c\)

b, Đặt \(t=\frac{1}{2004y}\)\(\Rightarrow t=\frac{\left(x+2004\right)^2}{2004x}\)

\(=\frac{x^2+2.2004x+2004^2}{2004x}\)

\(=\frac{x}{2004}+2+\frac{2004}{x}\)

Áp dụng bdt Cô-si ta có: \(t=\frac{1}{2004y}\ge2+2=4\)

Dấu "=" xảy ra khi x = 2004

\(\Rightarrow y\le\frac{1}{2004.4}=\frac{1}{8016}\)

Vậy GTLN của y = 1/8016 khi x = 2004

27 tháng 11 2016

a) ta có A = (2x-1)2+ ( x+2)= 4x2- 4x +1 +x+2= 4x2 -3x +3 = 4x2-2*2x* \(\frac{3}{4}\)+ \(\frac{9}{16}\)+ \(\frac{39}{16}\)

= (2x-\(\frac{3}{4}\))2+ \(\frac{39}{16}\)

=> (2x-\(\frac{3}{4}\))2>=0

=> A >= \(\frac{39}{16}\)

dấu = sảy ra khi x=\(\frac{3}{2}\)

vậy A(min) = \(\frac{39}{16}\) khi x=\(\frac{3}{2}\)

 

b) lm tương tự B(min)= -\(\frac{25}{4}\) khi x= \(\frac{5}{2}\)

c) đặt dấu trừ ra ngoài vậy C(max)=0 khi x=2

 

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1