Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=[(x+1)(x-6)][(x-2)(x-3)]
=(x2-5x-6)(x2-5x+6)
=(x2-5x)2-36>=-36
GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5
B=(x-3)2+(x-11)2
=x2-6x+9+x2-22x+121
=2x2-28x+130
=2(x2-14x+65)
=2(x2-2.7x+72-72+65)
=2[(x-7)2-49+65]
=2(x-7)2+32
=> vì 2(x-7)2 >= 0
=>2(x-7)2+32 >= 32
=> GTNN của B=32. Khi x=7
Bạn xem lại bài 1 đi:Đề phải là tìm GTLN chứ
2a:
Ta có:\(a^2+b^2+c^2=ab+ac+bc\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2;\left(a-c\right)^2;\left(b-c\right)^2\ge0\) nên \(\left(a-b\right)^2=\left(a-c\right)^2=\left(b-c\right)^2=0\Leftrightarrow a=b=c\)
a, \(P=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
Áp dụng bdt Cô-si ta có: \(P\ge3+2+2+2=9\)
Dấu "=" xảy ra khi \(a=b=c\)
b, Đặt \(t=\frac{1}{2004y}\)\(\Rightarrow t=\frac{\left(x+2004\right)^2}{2004x}\)
\(=\frac{x^2+2.2004x+2004^2}{2004x}\)
\(=\frac{x}{2004}+2+\frac{2004}{x}\)
Áp dụng bdt Cô-si ta có: \(t=\frac{1}{2004y}\ge2+2=4\)
Dấu "=" xảy ra khi x = 2004
\(\Rightarrow y\le\frac{1}{2004.4}=\frac{1}{8016}\)
Vậy GTLN của y = 1/8016 khi x = 2004
a) ta có A = (2x-1)2+ ( x+2)= 4x2- 4x +1 +x+2= 4x2 -3x +3 = 4x2-2*2x* \(\frac{3}{4}\)+ \(\frac{9}{16}\)+ \(\frac{39}{16}\)
= (2x-\(\frac{3}{4}\))2+ \(\frac{39}{16}\)
=> (2x-\(\frac{3}{4}\))2>=0
=> A >= \(\frac{39}{16}\)
dấu = sảy ra khi x=\(\frac{3}{2}\)
vậy A(min) = \(\frac{39}{16}\) khi x=\(\frac{3}{2}\)
b) lm tương tự B(min)= -\(\frac{25}{4}\) khi x= \(\frac{5}{2}\)
c) đặt dấu trừ ra ngoài vậy C(max)=0 khi x=2
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
B = x2 - 2ax + a2 + x2 - 2bx + b2 + x2 - 2cx + c2
= 3x2 - 2(a + b + c)x + a2 + b2 + c2
= 3\(\left(x-\frac{a+b+c}{3}\right)^2\)- \(\frac{\left(a+b+c\right)^2}{3}\) + a2 + b2 + c2
B đạt min khi x = \(\frac{a+b+c}{3}\)
Thay x = \(\frac{a+b+c}{3}\)vào B
MinB = \(\left(\frac{a+b+c-3a}{3}\right)^2\)+ \(\left(\frac{a+b+c-3b}{3}\right)^2\) + \(\left(\frac{a+b+c-3c}{3}\right)^2\)
= \(\left(\frac{b+c-2a}{3}\right)^2\)+ \(\left(\frac{a+c-2b}{3}\right)^2\) + \(\left(\frac{a+b-2c}{3}\right)^2\)
Chỗ này mình làm hơi rối
B = \(3\left(x-\frac{a+b+c}{3}\right)^2-\frac{\left(a+b+c\right)^2}{3}\)+ a2 + b2 + c2
B đạt min khi x = (a + b + c)/3
MinB = a2 + b2 + c2 - \(\frac{\left(a+b+c\right)^2}{3}\)