K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 2 2020

b/ Ko biết yêu cầu

4/ \(E=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)

Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)

\(F=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x^2}{4x^2}}=\frac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Rightarrow x=\sqrt[3]{2}\)

6/ \(Q=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{8\left(x+1\right)}{2\left(x+1\right)}}=4\)

Dấu "=" xảy ra khi \(\frac{x+1}{2}=\frac{8}{x+1}\Leftrightarrow x=3\)

NV
10 tháng 2 2020

7/

\(R=\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)

Dấu "=" xảy ra khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)

8/

\(S=x^2+\frac{2000}{x}=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{1000^2x^2}{x^2}}=300\)

Dấu "=" xảy ra khi \(x^2=\frac{1000}{x}\Leftrightarrow x=10\)

28 tháng 7 2020

+) \(B=6\sqrt{x-2}+6\sqrt{5-x}\Leftrightarrow B^2=\left(6\sqrt{x-2}+6\sqrt{5-x}\right)^2\)

\(=36\left(x-2\right)+36\left(5-x\right)+72\sqrt{\left(x-2\right)\left(5-x\right)}\ge108\Rightarrow B\ge6\sqrt{3}\)

+) \(A=B+2\sqrt{5-x}\ge6\sqrt{3}\)

Vậy \(A_{min}=6\sqrt{3}\)khi x=5

28 tháng 7 2020

+) Đặt \(a=\sqrt{x-2};b=\sqrt{5-x}\)

+) Ta có: \(a^2+b^2=3\) 

+) \(\left(a^2+b^2\right)\left(6^2+8^2\right)\ge\left(6a+8b\right)^2\Leftrightarrow\left(6a+8b\right)^2\le300\Rightarrow6a+8b\le10\sqrt{3}\)

Dấu = xảy ra khi \(\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{\sqrt{x-2}}{6}=\frac{\sqrt{5-x}}{8}\Leftrightarrow\frac{x-2}{36}=\frac{5-x}{64}\Leftrightarrow64x-128=180-36x\Leftrightarrow308=100x\)

\(\Leftrightarrow x=3.08\)

Vậy \(A_{max}=10\sqrt{3}\)khi x=3.08

4 tháng 8 2017

a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)

b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)

=(x^2-4x)(x^2-4x+3)

Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4

Dấu= xảy ra khi t=-3/2 >>>tìm x

18 tháng 9 2015

Ta có \(x,y>1\) và thoả mãn \(A=\frac{x^3+y^3-x^2-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}.\)

Theo bất đẳng thức Cô-Si ta có \(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}\cdot4\left(y-1\right)}=4x,\) 

và \(\frac{y^2}{x-1}+4\left(x-1\right)\ge2\sqrt{\frac{y^2}{x-1}\cdot4\left(x-1\right)}=4y.\)

Cộng hai bất đẳng thức lại ta được \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4\left(x+y-2\right)\ge4\left(x+y\right)\to A\ge8.\) Dấu bằng xảy ra khi và chỉ khi \(x=2\left(y-1\right),y=2\left(x-1\right)\to x=y=2.\) Vậy giá trị bé nhất của biểu thức \(A\)là \(8.\)

22 tháng 2 2019

\(A=8\left(x-2\right)^4+8\ge8\)

23 tháng 2 2019

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

29 tháng 7 2023

GTNN:

Vì \(\sqrt{x}\ge0\Rightarrow3\sqrt{x}\ge0\Rightarrow P=3\sqrt{x}+1\ge1\)

Dấu bằng xảy ra <=> x=0