Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath
2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
3/
a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0
=> 13-x = 1 => x = 12
Khi đó \(A=\frac{17}{13-12}=17\)
Vậy Amax = 17 khi x = 12
b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)
Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0
=>11-x=1 => x=10
Khi đó \(B=\frac{10}{11-10}=10\)
Vậy Bmax = 10 khi x=10
\(B=|2014-2x|+|2016-2x|\)
\(=|2014-2x|+|2x-2016|\ge|2014-2x+2x-2016|\)
Hay \(B\ge2\)
Dấu"="xảy ra \(\Leftrightarrow\left(2014-2x\right)\left(2x-2016\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}2014-2x\ge0\\2x-2016\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2014-2x< 0\\2x-2016< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\le2014\\2x\ge2016\end{cases}\left(loai\right)}\)hoặc\(\hept{\begin{cases}2x>2014\\2x< 2016\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1007\\x< 1008\end{cases}}\)
\(\Leftrightarrow1007< x< 1008\)
Vậy \(B_{min}=2\)\(\Leftrightarrow1007< x< 1008\)
\(\frac{\left(2x-2^3\right)}{2^2}=2^5\)
\(\frac{\left(2x-8\right)}{4}=32\)
2x-8=32.4
2x-8=128
2x =128+8
2x =136
x =136 : 2
x =68
Vậy : x=68
Xl bn , mk k bk lm vì hết hè mk mới nên lớp 6 mà thôi . Chúc bn sẽ sớm tìm đc đáp án
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
a, \(A=\left|x+1\right|+\left|y-2\right|\)
\(A=\left|x+1\right|+\left|5-x-2\right|\)
\(A=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)
Dấu " = " sảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le3\)
\(\left(\frac{3}{4x}+\frac{1}{2}\right)^2\ge0\) \(\forall x\)
=> \(\left(\frac{3}{4x}+\frac{1}{2}\right)^2-2\ge-2\) \(\forall x\)
hay \(B\ge-2\) \(\forall x\)
\(MinB=-2\Leftrightarrow\)\(\frac{3}{4x}+\frac{1}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
D = (2x - 1).5x - 3.(2x - 1)
(2x - 1).5x - 3.(2x - 1) = 0
5x.(2x - 1) - 3.(2x - 1) = 0
(2x - 1).(5x - 3) = 0
2x - 1 = 0 hoặc 5x - 3 = 0
2x = 0 + 1 5x = 0 + 3
2x = 1 5x = 3
x = 1/2 x = 3/5
=> x = 1/2 hoặc x = 3/5
=67857565473/5365;4373/4534
Đk: \(x\in N\)
Do \(\left|a-b\right|\ge\left|a\right|-\left|b\right|\) nên
\(B=\left|2x-3\right|+2x-8\ge\left|2x\right|-\left|3\right|+2x-8\)
\(=2x-3+2x-8=4x-5\ge-5\)
Vậy \(B_{min}=-5\Leftrightarrow4x=0\Leftrightarrow x=0\)