\(\frac{x^2+4x+4}{x}\) b)\(\frac{x^5+2}{x^3}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

\(\frac{x^2+4x+4}{x}\left(+\right)=x+4+\frac{4}{x}Ap-dung-bdt-co-si--TA-CO\\ x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=4=>\left(+\right)\ge4+4=8\\ Dau-"="-xay-ra-tai-x=2\)

11 tháng 2 2020

A = \(x^2+3x-7=x^2+2x\frac{3}{2}+\frac{9}{4}-\frac{37}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{37}{4}\ge-\frac{37}{4}\)

\(\Rightarrow\)min A = \(-\frac{37}{4}\Leftrightarrow x=-\frac{3}{2}\)

B = \(x-5\sqrt{x}-1\) ĐKXĐ: \(x\ge0\)

\(=x-2\sqrt{x}\frac{5}{2}+\frac{25}{4}-\frac{29}{4}=\left(\sqrt{x}-\frac{5}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)

\(\Rightarrow\)min B = \(-\frac{29}{4}\Leftrightarrow x=\frac{25}{4}\)( thỏa mãn)

C = \(\frac{-4}{\sqrt{x}+7}\) ĐKXĐ:\(x\ge0\)

Ta có: \(\sqrt{x}+7\ge7\Rightarrow\frac{4}{\sqrt{x}+7}\le\frac{4}{7}\)\(\Leftrightarrow\frac{-4}{\sqrt{x}+7}\ge-\frac{4}{7}\)

\(\Rightarrow\)min C = \(-\frac{4}{7}\Leftrightarrow x=0\)

D = \(\frac{\sqrt{x}+1}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=1-\frac{2}{\sqrt{x}+3}\ge1-\frac{2}{3}=\frac{1}{3}\)

\(\Rightarrow\)min D = \(\frac{1}{3}\Leftrightarrow x=0\)

11 tháng 2 2020

E = \(\frac{x+7}{\sqrt{x}+3}\) ĐKXĐ:\(x\ge0\)

\(=\frac{x-9+16}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}=\sqrt{x}-3+\frac{16}{\sqrt{x}+3}=\sqrt{x}+3+\frac{16}{\sqrt{x}+3}-6\ge2\sqrt{16}-6=2\)

\(\Rightarrow\)min E = \(2\Leftrightarrow x=1\)(thỏa mãn)

F = \(\frac{x^2+3x+5}{x^2}\) ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\)\(x^2\left(F-1\right)-3x-5=0\)

△ = \(3^2+20\left(F-1\right)\ge0\)\(\Leftrightarrow F\ge\frac{11}{20}\)

\(\Rightarrow\)min F = \(\frac{11}{20}\Leftrightarrow x=-\frac{10}{3}\)( thỏa mãn)

NV
10 tháng 2 2020

b/ Ko biết yêu cầu

4/ \(E=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)

Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)

\(F=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x^2}{4x^2}}=\frac{3}{\sqrt[3]{4}}\)

Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Rightarrow x=\sqrt[3]{2}\)

6/ \(Q=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{8\left(x+1\right)}{2\left(x+1\right)}}=4\)

Dấu "=" xảy ra khi \(\frac{x+1}{2}=\frac{8}{x+1}\Leftrightarrow x=3\)

NV
10 tháng 2 2020

7/

\(R=\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)

Dấu "=" xảy ra khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)

8/

\(S=x^2+\frac{2000}{x}=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{1000^2x^2}{x^2}}=300\)

Dấu "=" xảy ra khi \(x^2=\frac{1000}{x}\Leftrightarrow x=10\)

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:

a) ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$

b) ĐKXĐ: $3+2x>0\Leftrightarrow x>\frac{-3}{2}$

c) ĐKXĐ: $x^2-4\geq 0\Leftrightarrow (x-2)(x+2)\geq 0$

$\Leftrightarrow x\geq 2$ hoặc $x\leq -2$

d)

ĐKXĐ\(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}\neq 2\\ x+1>0\\ x\neq 0\\ \sqrt{x}\neq 3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ x\neq 4\\ x\neq 9\end{matrix}\right.\)

e)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ 7-\sqrt{x}>0\end{matrix}\right.\Leftrightarrow 0\leq x< 49\)

f)

\(\left\{\begin{matrix} 5-x\neq 0\\ \frac{x+3}{5-x}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x+3\geq 0\\ 5-x>0\end{matrix}\right.\\ \left\{\begin{matrix} x+3\leq 0\\ 5-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow -3\leq x< 5\)

18 tháng 7 2016

1) \(A=\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=3-2\sqrt{2}\)

\(B=\sqrt{4-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}-1+2-\sqrt{3}=1\)

\(C=\sqrt{63}-\sqrt{28}-\sqrt{7}=3\sqrt{7}-2\sqrt{7}-\sqrt{7}=0\)

\(D=\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}=\frac{4}{2}=2\)

\(M=\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right):\frac{5-\sqrt{5}}{\sqrt{5}-1}=\frac{3+\sqrt{5}-3+\sqrt{5}}{9-5}.\frac{\sqrt{5}-1}{\sqrt{5}\left(\sqrt{5}-1\right)}=\frac{2}{4}=\frac{1}{2}\)

18 tháng 7 2016

bạn khó bài nào mik lm cho chứ nhiều quá