Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\sqrt{4-x^2}>=0\)
Dấu '=' xảy ra khi x=2 hoặc x=-2
b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)
\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)
Dấu '=' xảy ra khi x=1/2
c: \(x+\sqrt{x}+1>=1\)
=>1/(x+căn x+1)<=1
Dấu '=' xảy ra khi x=0
Mình nghĩ đề bài là tìm GTLN :D Sai thì thôi :D
\(\dfrac{1}{1+\sqrt{x}}+\dfrac{1}{1+\sqrt{y}}+\dfrac{1}{1+\sqrt{z}}=2\)
⇔ \(\dfrac{1}{1+\sqrt{x}}=1-\dfrac{1}{1+\sqrt{y}}+1-\dfrac{1}{1+\sqrt{z}}=\dfrac{\sqrt{y}}{1+\sqrt{y}}+\dfrac{\sqrt{z}}{1+\sqrt{z}}\text{≥}2\sqrt{\dfrac{\sqrt{yz}}{\left(1+\sqrt{y}\right)\left(1+\sqrt{z}\right)}}\) Làm tương tự : \(\dfrac{1}{1+\sqrt{y}}\text{≥}2\sqrt{\dfrac{\sqrt{xz}}{\left(1+\sqrt{x}\right)\left(1+\sqrt{z}\right)}}\)
\(\dfrac{1}{1+\sqrt{z}}\text{≥}2\sqrt{\dfrac{\sqrt{xy}}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)}}\)
⇒ \(\dfrac{1}{1+\sqrt{x}}.\dfrac{1}{1+\sqrt{y}}.\dfrac{1}{1+\sqrt{z}}\text{≥}8.\dfrac{\sqrt{xyz}}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)\left(1+\sqrt{z}\right)}\)
⇔ \(\dfrac{1}{8}\text{≥}\sqrt{xyz}\)
\("="\text{⇔}x=y=z=\dfrac{1}{2}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}-1\ne0\\\sqrt{x}+1\ne0\\x-1\ne0\\\sqrt{x}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge0\end{matrix}\right.\)
b) \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{x-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)}\)c)\(B=A\left(x-1\right)=\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)}\left(x-1\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)(Vì \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\))
=> MinB =\(-\dfrac{1}{4}\) khi x= \(\dfrac{1}{4}\)
Trả lời:
\(\dfrac{1}{1+\sqrt{1-x^2}}\)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow-x^2\le0\forall x\)
\(\Rightarrow1-x^2\le1\forall x\)
\(\Rightarrow\sqrt{1-x^2}\le1\forall x\)
\(\Rightarrow1+\sqrt{1-x^2}\le2\forall x\)
\(\Rightarrow\dfrac{1}{1+\sqrt{1-x^2}}\ge\dfrac{1}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy GTNN của biểu thức là 1/2 <=> x = 0