Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Trở lại bài toán ta có:
\(C=\left|2000x+2016\right|+\left|2000x-2017\right|\)
\(C=\left|2000x+2016\right|+\left|2017-2000x\right|\)
\(C\ge\left|2000x+2016+2017-2000x\right|=4033\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x+2016\ge0\\2017-2000x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2000x+2016\le0\\2017-2000x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2000x\ge-2016\\2000x\le2017\end{matrix}\right.\\loại\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{2016}{2000}\\x\le\dfrac{2017}{2000}\end{matrix}\right.\)
Vậy \(-\dfrac{2016}{2000}\le x\le\dfrac{2017}{2000}\)
bạn ơi còn cách phân tích từng giá trị tuyệt đối thì làm kiểu gì bạn?
Ta có \(\left|2000x+2012\right|+\left|2013-2000x\right|\ge\left|2000x+2012+2013-2000x\right|=\left|4025\right|=4025\)
^.^
Ta có:
\(2000x=\frac{2000x}{2000x};5000y=\frac{5000y}{5000y};10000x=\frac{10000z}{10000z}\Rightarrow x=y=z\)
=> 2000x = 5000y = 10000z \(=\frac{2000x}{2000x}=\frac{5000y}{5000y}=\frac{10000z}{10000z}\)
=> \(\frac{2000x}{10000}=\frac{5000y}{10000}=\frac{10000z}{10000}\)
chắc vậy
\(P=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left(\left|x-2015\right|+\left|x-2017\right|\right)+\left|x-2016\right|\)
\(=\left(\left|x-2015\right|+\left|2017-x\right|\right)+\left|x-2016\right|\)
\(=\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+ \left|x-2016\right|\)
Vì \(\left|x-2016\right|\ge0\left(\forall x\in Z\right)\Rightarrow2+\left|x-2016\right|\ge2\)
Dấu "=" xảy ra khi (x-2015).(2017-x) >= 0 và x - 2016 = 0
<=> x = 2016
Vậy Pmin = 2 khi x = 2016
mk ko viết lại đề
P= |x-2015|+|x-2016|+|2017-x|
\(\ge\)\(\left|x-2105+2017-x\right|+\left|x-2016\right|\)
=\(\left|2\right|+\left|x-2016\right|=2+\left|x-2016\right|\)
Do |x-2016|\(\ge0\)=> \(2+\left|x-2016\right|\ge2\)
dấu "=" xảy ra khi (x-2015).(2017-x)\(\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le2017\end{cases}\Rightarrow2015\le x\le2017}\)
Vậy GTNN của P=2 \(\Leftrightarrow2015\le x\le2017\)
Ta có: C= |2000x+2016|+|2000x-2017|
=> C = |2000x+2016+2000x-2017|
= 4000x-1 <= -1
Dấu "=" xảy ra khi 4000x=0 => x=0
Vậy Cmax=-1 khi x=0
Không chắc. Chúc bạn học giỏi!
C=|2000x+2016|+|2000x-2017|=|2000x+2016|+|2017-2000x|
Áp dụng : |A|+|B|>=|A+B|
dấu "=" xảy ra <=>A.B=0 ta có
C=|2000x+2016|+|2017-2000x|>=|2000x+2016+2017-200x|=4033
dấu "=" xảy ra <=>(2000x+2016).(2017-2000x)=0
<=>2000x+2016=0=>2000x=-2016=>x=1.008
hoặc 2017-2000x=0=>x=2017:2000=1,0085
vaayjMaxC=4033<=>x=.......