K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

                            Giải

Để \(\left|x+1\right|-1\) đạt GTNN thì \(\left|x+1\right|\) phải nhỏ nhất.

Mà \(\left|x+1\right|\ge0\) suy ra  GTNN của \(\left|x+1\right|=0\) 

Vậy GTNN của \(\left|x+1\right|-1\) bằng 1.

27 tháng 2 2019

:O  0-1=1, mà b trình bày ko đc tốt lắm 

\(\left|x+1\right|\ge0\Rightarrow\left|x+1\right|-1\ge-1\)

\(\text{Dấu = xảy ra khi: }x+1=0\)

\(x=-1\). Vậy.....

16 tháng 4 2019

\(M=\left|x-\frac{1}{2}\right|+\left|x-1\right|+\left|x+\frac{1}{4}\right|\)

\(+)\left|x-1\right|+\left|x+\frac{1}{4}\right|=\left|1-x\right|+\left|x+\frac{1}{4}\right|\ge\left|1-x+x+\frac{1}{4}\right|=\frac{5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right)\left(x+\frac{1}{4}\right)\ge0\Leftrightarrow-\frac{1}{4}\le x\le1\)

\(+)\left|x-\frac{1}{2}\right|\ge0\).Dấu '=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

\(\Rightarrow M\ge\frac{5}{2}+0=\frac{5}{2}\)

\(\Rightarrow M_{min}=\frac{5}{2}\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le1\\x=\frac{1}{2}\end{cases}\Rightarrow x=\frac{1}{2}}\)

16 tháng 4 2019

Cảm ơn các bạn nhiều nha

11 tháng 12 2017

Ta có :

A = | x + 1 | + | x - 6 |

A = | x + 1 | + | 6 - x | \(\ge\)| x + 1 + 6 - x | = 7

\(\Rightarrow\)GTLN của A là 7 khi ( x + 1 ) . ( 6 - x ) \(\ge\)0 hay -1 \(\le\)\(\le\)6

4 tháng 12 2016

Áp dụng bđt $|a| + |b| \geqslant |a+b|$ với dấu '=' tại $ab \geqslant 0$ :

$$G = |x-2014| + |x-1| = |x-2014| + |1-x| \geqslant |x-2014 + 1 - x| = 2013$$

Vậy $G_\text{min} = 2013 \iff (x-2014)(1-x) \geqslant 0 \iff 1 \leqslant x \leqslant 2014$

4 tháng 12 2016

\(G=\left|x-2014\right|+\left|x-1\right|=\left|x-2014\right|+\left|1-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2014\right|+\left|1-x\right|\ge\left|x-2014+1-x\right|=2013\)

Dấu = khi \(1\le x\le2014\)

Vậy MinG=2013 khi \(1\le x\le2014\)

17 tháng 11 2019

Áp dụng BĐT dạng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

A = \(\left|x-1\right|+\left|x+2012\right|=\left|1-x\right|+\left|x+2012\right|\ge\left|1-x+x+2012\right|\)

\(\Leftrightarrow A\ge2013\)

Vậy GTNN của \(A=2013\)

Giastrij này đạt tại \(\left(1-x\right)\left(x+2012\right)\ge0\Leftrightarrow-2012\le x\le1\)

17 tháng 11 2019

\(A=\left|x-1\right|+\left|x+2012\right|\)

\(A=\left|1-x\right|+\left|x+2012\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A\ge\left|1-x+x+2013\right|=2013\)

Dấu bằng xảy ra 

\(\Leftrightarrow\left(1-x\right)\left(x+2012\right)=0\)

\(\Leftrightarrow-2012\le x\le1\)

Vậy Min A= 2013 \(\Leftrightarrow-2012\le x\le1\)