Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
b.x+y+xy=3
=>x+y(x+1)=3
=>(x+1)+y(x+1)=4
=>(y+1)(x+1)=4
ta có bảng sau
x+1 | -1 | 1 | -4 | 4 | 2 | -2 |
y+1 | -4 | 4 | -1 | 1 | 2 | -2 |
x | -2 | 0 | -5 | 3 | 1 | -3 |
y | -5 | 3 | -2 | 0 | 1 | -3 |
a.(x2+5)2+4 nhỏ nhất =>(x2+5)2 nhỏ nhất=>x2+5 nhỏ nhất=>x2+5\(\ge\)0+5=5=>x2+5 nhỏ nhất =5
=>GTNN của (x2+5)2+4=52+4=25+4=29
Ta có:\(\left(x+y-3\right)^4\ge0;\left(x-2y\right)^2\ge0\Rightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)
\(\Rightarrow A=\left(x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu bằng xảy ra khi và chỉ khi:
\(\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\x=2y\end{cases}}\Rightarrow2y+y=3\Rightarrow y=1\Rightarrow x=2\)
Vậy \(A_{min}=2012\Leftrightarrow x=2\)
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)
Bài 1 :
a) Vì ( x + 1 )2 ≥ 0 ∀ x
=> M = ( x + 1 )2 - 3 ≥ -3
Dấu "=" xảy ra <=> ( x + 1 )2 = 0
<=> x + 1 = 0 <=> x = -1
b) Vì ( y + 3 )2 ≥ 0 ∀ x
=> N = 5 - ( y + 3 )2 ≥ 5
Dấu "=" xảy ra <=> ( y + 3 )2 = 0
<=> y + 3 = 0 <=> y = -3
Xét thấy
( x- 1 )^2 >= 0 với mọi x
( y + 1 )^4 lớn hơn bằng 0 với mọi y
=> ( x - 1 )^2 + ( y + 1 )^4 >= 0
VẬy GTNN của BT là 0 khi và chỉ khi x - 1 = 0 và y + 1 = 0 => x = 1 và y = -1
****