Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (a-b)^2(a^2+ba+b^2)>=0
<=>4(a-b)^2(a^2+ba+b^2)>=0 (1)
(a^2-b^2)^2>=0
<=>a^4+b^4-2a^2b^2>=0
<=>3(a^4+b^4-2a^2b^2)>=0 (2)
từ (1) và (2) =>4(a-b)^2(a^2+ba+b^2)+3(a^4+b^4-2a^2b^2...
<=>7(a^2+b^2) - 6a^2b^2 - 4ab(a^2+b^2)>=0
<=>8(a^2+b^2)>= a^4+b^4 + 2a^2b^2 + 4a^2b^2 + 4a^3b+4b^3a=(a+b)^4
<=>(a^4+b^4)>=(a+b)^4/8
<=>(a+b+2)(a^4+b^4)>=(a+b)^4.(a+b+2)/8 = (a+b)^5/8 + (a+b)^4/4 = (a+b)^5/8 + 15(a+b)^4/64 + (a+b)^4/64 (3)
ta lại có a+b>=2 căn ab = 4
=>15(a+b)^4/64>=60 và (a+b)^5/8>=128 (4)
từ (3) và (4) => (a+b+2)(a^4 + b^4) >=60+128+(a+b)^4/64
<=>(a+b+2)(a^2 + b^2) + 16/(a+b) >=188+(a+b)^4/64 + 16/(a+b) (5)
mặt khác (a+b)^4/64 + 16/(a+b) >= 2 căn[ (a+b)^3/ 4 ] = căn (a+b)^3 >= căn (4^3)= 8 (6)
từ (5) và (6) => (a+b+2)(a^4 + b^4) + 16/(a+b) >=188+8=196
=> min[ (a+b+2)(a^4 + b^4) + 16/(a+b) ] = 196 khi và chỉ khi a=b=2
Nguồn: The Duc
\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{\left(a-1\right)^2}{4a}\left(\frac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)
\(=\frac{\left(a-1\right)\left(-2\right)2\sqrt{a}}{4a}=-\frac{\left(a-1\right)}{\sqrt{a}}\)
Xét : a^2/b-1 + 4.(b-1) >= \(2\sqrt{\frac{a^2}{b-1}.4.\left(b-1\right)}\) = 4a
Tương tự : b^2/a-1 + 4.(a-1) >= 4b
<=> G + 4.(a-1)+(4.(b-1) >= 4a+4b
<=> G + 4a+4b-8 >= 4a+4b
<=> G >= 4a+4b-4a-4b+8 = 8
Dấu "=" xảy ra <=> a^2/b-1 = 4.(b-1) và b^2/a-1 = 4.(a-1) <=> a=b=2
Vậy GTNN của G = 8 <=> a=b=2
Tk mk nha
đúng rồi
đúng
đúng
100000000000000000000000000000000000000000000000000%
\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)
( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )
Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )
\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)
Dấu "=" xảy ra <=> a=b=1/2
Vậy ...
\(A=\dfrac{a+1}{a}\) hay \(A=a+\dfrac{1}{a}\)?
A=a+1aA=a+1a