Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: sửa đề: Tìm GTNN
a, \(A=x^2-6x+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1\)
Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy \(MIN_A=1\) khi x = 3
b, \(B=x^2+y^2-2x+4y+5\)
\(=x^2-2x+1+y^2+4y+4\)
\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(MIN_B=0\) khi x = 1 và y = -2
\(C=2\left(x-\frac{5}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\Rightarrow C_{min}=\frac{7}{8}\)
\(D=\left(x^2+4xy+4y^2\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{8083}{4}\)
\(D=\left(x+2y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{8083}{4}\ge\frac{8083}{4}\)
\(E=\frac{1}{2}\left(4x^2+y^2+\frac{9}{4}-4xy-6x+3y\right)+\frac{1}{2}\left(y^2+y+\frac{1}{4}\right)+\frac{15}{4}\)
\(E=\frac{1}{2}\left(2x-y-\frac{3}{2}\right)^2+\frac{1}{2}\left(y+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(A=-\left(x-2\right)^2+11\le11\)
\(B=-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
\(C=-\left(x-3y\right)^2-\left(y-2\right)^2+11\le11\)
\(A\left(x\right)=-\left(x^2-\frac{5}{3}x\right)+1=-3\left(x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2\right)+1+3.\left(\frac{5}{6}\right)^2\)
\(=-3\left(x-\frac{5}{6}\right)^2+\frac{37}{12}\le\frac{37}{12}\)
Dấu "=" xảy ra khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy GTLN của A là 37/12.
b, c làm tương tự.
Bài 2:
a: \(=-\left(x^2+2x-100\right)\)
\(=-\left(x^2+2x+1-101\right)\)
\(=-\left(x+1\right)^2+101< =101\)
Dấu = xảy ra khi x=-1
b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)
Dấu = xảy ra khi x=1/6
c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)
\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)
\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)
Dấu = xảy ra khi x=3 và y=-1
\(C=3x^2+y^2-2xy-7\)
\(=\left(x^2-2xy+y^2\right)+2x^2-7\)
\(=\left(x-y\right)^2+x^2-7\)
Ta có :
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\2x^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(x-y\right)^2+2x^2-7\ge-7\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=y=0\end{matrix}\right.\)
Vậy \(Min_C=-7\Leftrightarrow x=y=0\)
ta có : \(C=3x^2+y^2-2xy-7=x^2-2xy+y^2+2x^2-7\)
\(=\left(x-y\right)^2+2x^2-7\ge-7\)
\(\Rightarrow\) GTNN của \(C\) là \(-7\) dâu "=" xảy ra khi \(x=y=0\)
vậy GTNN của \(C\) là \(-7\) khi \(x=y=0\)