Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne0\)
\(A=x^2-3x+\frac{4}{x}+2016=\left(x^2-4x+4\right)+\left(x+\frac{4}{x}\right)+2012\)
\(A=\left(x-2\right)^2+\left(x+\frac{4}{x}\right)+2012\ge0+2\sqrt{x.\frac{4}{x}}+2012=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\x=\frac{4}{x}\end{cases}\Leftrightarrow x=2}\)
...
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
Côsi:
\(x+1=\left(x-2006\right)+2007\ge2\sqrt{2007}.\sqrt{x-2006}\)
\(x-1=\left(x-2007\right)+2006\ge2\sqrt{2006}.\sqrt{x-2007}\)
\(A\le\frac{1}{2\sqrt{2007}}+\frac{1}{2\sqrt{2006}}\)
Dấu bằng: \(\hept{\begin{cases}x-2006=2007\\x-2007=2006\end{cases}\Leftrightarrow x=2006+2007=4013}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(4x+\frac{1}{4x}\ge2\sqrt{4x\cdot\frac{1}{4x}}=2\)
=> \(A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016\)
=> \(A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014\)
=> \(A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014\)
hay \(A\ge2014\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}4x=\frac{1}{4x}\\2\sqrt{x}-1=0\end{cases}}\Rightarrow x=\frac{1}{4}\)
Vậy GTNN của A = 2014 <=> x = 1/4
a)Đặt \(\sqrt{x-2016}=a\Leftrightarrow a^2+2016=x\)
Ta có \(a^2+2016-a=a^2-2\cdot\frac{1}{2}a+\frac{1}{4}+2015,75=\left(a-\frac{1}{2}\right)^2+2015,75\ge2015,75\)
Đẳng thức xảy ra <=>\(a=\frac{1}{2}=\sqrt{x-2016}\Leftrightarrow x=\frac{1}{4}+2016=2016,25\)
Vậy ...
b)\(x+\sqrt{x}+1=x+2\cdot\frac{1}{2}\cdot\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{1}{4}+\frac{3}{4}=1\)
Đẳng thức xảy ra <=>x=0
Vậy ...
a) Tìm GTNN của biểu thức : |x - 2015| + |x - 2016|.
b) Tìm GTLN của biểu thức : \(\sqrt{8+2x-x^2}\).
a)=**** 100%
b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%
Sửa đề : \(P=\frac{x^2+12}{x+y}+y\)
\(P=\frac{x^2}{x+y}+\frac{1}{4}\left(x+y\right)-\frac{1}{4}x+\frac{3}{4}y+\frac{12}{x+y}\)
\(\ge x-\frac{1}{4}x+\frac{3}{4}y+\frac{12}{x+y}\)( Áp dụng BĐT Cô - si )
\(=\frac{3}{4}\left(x+y\right)+\frac{12}{x+y}\)
\(\ge2\sqrt{\frac{3}{4}.12}=6\) ( Áp dụng BĐT Cô - si 1 lần nữa )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x+y}=\frac{1}{4}\left(x+y\right)\\\frac{3}{4}\left(x+y\right)=\frac{12}{\left(x+y\right)}\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\x+y=4\end{cases}}}\)
Vậy Min P = 6 khi x = y =2
\(A=x^2-x+\frac{12}{x}+2016\)
\(=\left(x^2-x+\frac{12}{x}-8\right)+2024\)
\(=\left(\frac{x^3}{x}-\frac{x^2}{x}+\frac{12}{x}-\frac{8x}{x}\right)+2024\)
\(=\left(\frac{x^3-x^2+12-8x}{x}\right)+2024\)
\(=\frac{\left(x-2\right)^2\left(x+3\right)}{x}+2024\ge2024\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}\left(x-2\right)^2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(Min_A=2024\) khi \(\left[\begin{matrix}x=2\\x=-3\end{matrix}\right.\)