\(P=x^3+y^3+xy\), biết x,y thuộc R và x+y=1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Ta có : 

\(P=\left(x+y\right)\left(x^2-xy+y^2\right)+xy=x^2-xy+y^2+xy=x^2+y^2\) (Do x + y = 1)

Áp dụng bđt Bunhiacopxki ta có : \(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2\)

\(\Leftrightarrow2P\ge\left(x+y\right)^2\Rightarrow P\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

27 tháng 10 2019

a.\(DK:x,y>0\)

Ta co:

\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b.

Ta lai co:

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)

Dau '=' xay ra khi \(x=y=4\)

Vay \(A_{min}=1\)khi \(x=y=4\)

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

19 tháng 7 2018

Ta có: 

Với \(x=0\)\(y^2=3\Rightarrow P=3\)

Với  \(y=0\Rightarrow x^2=3\Rightarrow P=3\)

Với \(x\ne0,y\ne0\) thì ta có: \(\frac{P}{3}=\frac{x^2+y^2}{x^2-xy+y^2}=\frac{\frac{x^2+y^2}{xy}}{\frac{x^2-xy+y^2}{xy}}=\frac{\frac{x}{y}+\frac{y}{x}}{\frac{x}{y}+\frac{y}{x}-1}\)

Đặt \(\frac{x}{y}=t\Rightarrow\frac{P}{3}=\frac{t+\frac{1}{t}}{t+\frac{1}{t}-1}=\frac{t^2+1}{t^2-t+1}\)

\(\Rightarrow Pt^2-Pt+P=3t^2+3\)

\(\Rightarrow\left(P-3\right)t^2-Pt+\left(P-3\right)=0\)

\(\Delta=P^2-4\left(P-3\right)^2=-3P^2+24P-36\)

Để \(\Delta\ge0\Rightarrow-3P^2+24P-36\ge0\Leftrightarrow2\le P\le6.\)

Khi P = 2 thì \(-t^2-2t-1=0\Leftrightarrow t=-1\Rightarrow\frac{x}{y}=-1\)

Vậy thì \(x^2+x^2+x^2=3\Rightarrow\orbr{\begin{cases}x=1,y=-1\\x=-1,y=1\end{cases}}\)

Vậy GTNN của P là 2 khi x = 1, y = -1 hoặc x = -1, y = 1

25 tháng 4 2019

Biến đổi từ giả thiết

\(x^3+y^3+6xy\le8\)

\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)

\(\Leftrightarrow x+y-2\le0\)

(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))

\(\Leftrightarrow x+y\le2\)

Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)

                                 \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)

Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)

               \(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)

                 \(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)

Dấu "=" <=> a= b = 1

22 tháng 3 2017

Có : A= 1/(x^3+y^3)+1/xy
=> A= 1/(x+y)(x^2+xy+y^2) +1/xy
=> A=1/(x^2+xy+y^2)+1/xy (vì x+y=1)
Áp dụng bđt : 1/a+1/b >= 4/(a+b)
=> 1/(x^2+xy+y^2) +1/xy >= 1/(x+y)^2
=> A >=1
Đẳng thức xảy ra <=> x=y và x+y=1 => x=y=0,5
Vậy Amin=1 <=> x=y=0,5

22 tháng 3 2017

Nhầm Amin =4 :v

15 tháng 2 2017

Đặt xy = a .

Ta có x + y = 1  => x^3 + y^3 = 1 - 3xy ( mũ 3 hai vế ) 

* Ta có a = xy \(\le\) \(\frac{\left(x+y\right)^2}{4}\) = \(\frac{1}{4}\) 
=> P = \(\frac{1}{1-3xy}\)+\(\frac{1}{xy}\)= \(\frac{1-2a}{a-3a^2}\)

Để tìm min P thì ta tìm max \(\frac{1}{P}\)= Q <=> Q =  \(\frac{a-3a^2}{1-2a}\)

  Đặt A=(a-3a^2 )/(1-2a)
<=> A-2Aa=a-3a^2
<=> 3a^2 -a(1+2A)+A=0
Giải delta >=0 là 1 biểu thức theo A
từ đó tìm được min và max A

5 tháng 12 2019

\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x=y=z=1 

12 tháng 5 2018

a) \(P=\dfrac{\left(x^2+2xy+9y^2\right)-\left(x+3y-2\sqrt{xy}\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x^2+6xy+9y^2\right)-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)^2-\left(x+3y\right)2\sqrt{xy}}{x+3y-2\sqrt{xy}}\)

\(=\dfrac{\left(x+3y\right)\left(x+3y-2\sqrt{xy}\right)}{x+3y-2\sqrt{xy}}\)

\(P=x+3y\)

b) \(\dfrac{P}{\sqrt{xy}+y}=\dfrac{x+3y}{\sqrt{xy}+y}=\dfrac{\left(x+3y\right):y}{\left(\sqrt{xy}+y\right):y}=\dfrac{\dfrac{x}{y}+3}{\sqrt{\dfrac{x}{y}}+1}\)

Đặt \(t=\sqrt{\dfrac{x}{y}}>0\)\(\dfrac{P}{\sqrt{xy}+y}=Q\) thì \(Q=\dfrac{t^2+3}{t+1}=\dfrac{\left(t-1\right)^2+2\left(t+1\right)}{t+1}=2+\dfrac{\left(t-1\right)^2}{t+1}\ge2\)

\(Q_{min}=2\Leftrightarrow t=1\Leftrightarrow x=y\)