Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
Ta có:\(\left(x+y-3\right)^4\ge0;\left(x-2y\right)^2\ge0\Rightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)
\(\Rightarrow A=\left(x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu bằng xảy ra khi và chỉ khi:
\(\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\x=2y\end{cases}}\Rightarrow2y+y=3\Rightarrow y=1\Rightarrow x=2\)
Vậy \(A_{min}=2012\Leftrightarrow x=2\)
Bài 1 :
a) Vì ( x + 1 )2 ≥ 0 ∀ x
=> M = ( x + 1 )2 - 3 ≥ -3
Dấu "=" xảy ra <=> ( x + 1 )2 = 0
<=> x + 1 = 0 <=> x = -1
b) Vì ( y + 3 )2 ≥ 0 ∀ x
=> N = 5 - ( y + 3 )2 ≥ 5
Dấu "=" xảy ra <=> ( y + 3 )2 = 0
<=> y + 3 = 0 <=> y = -3
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
b.x+y+xy=3
=>x+y(x+1)=3
=>(x+1)+y(x+1)=4
=>(y+1)(x+1)=4
ta có bảng sau
x+1 | -1 | 1 | -4 | 4 | 2 | -2 |
y+1 | -4 | 4 | -1 | 1 | 2 | -2 |
x | -2 | 0 | -5 | 3 | 1 | -3 |
y | -5 | 3 | -2 | 0 | 1 | -3 |
a.(x2+5)2+4 nhỏ nhất =>(x2+5)2 nhỏ nhất=>x2+5 nhỏ nhất=>x2+5\(\ge\)0+5=5=>x2+5 nhỏ nhất =5
=>GTNN của (x2+5)2+4=52+4=25+4=29
\(P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\)
Ta có: \(\left|x-3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+2\ge2\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge4\)
Lại có: \(\left|y+3\right|\ge0\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge2011\)
\(hay\) \(P\ge2011\)
- Dấu " = " xảy ra khi và chỉ khi: |x-3| = 0 => x = 3
|y+3| = 0 => y = -3
Vậy GTNN của P = 2001 khi x = 3 , y = -3
- (Mình ko chắc chắn phần dấu "=" xảy ra lắm).
mơn bạn nhé ^_^