K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

\(P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\)

Ta có: \(\left|x-3\right|\ge0\)

\(\Rightarrow\left|x-3\right|+2\ge2\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge4\)

Lại có: \(\left|y+3\right|\ge0\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge2011\)

\(hay\) \(P\ge2011\)

- Dấu " = " xảy ra khi và chỉ khi: |x-3| = 0 => x = 3

                                                |y+3| = 0 => y = -3

Vậy GTNN của P = 2001 khi x = 3 ,  y = -3

- (Mình ko chắc chắn phần dấu "=" xảy ra lắm).

28 tháng 6 2017

mơn bạn nhé ^_^

9 tháng 4 2021
Giá trị nhỏ nhất của P = 2007
11 tháng 6 2015

x+2/2013+x+1/2014=x/2015+x-1/2016

7 tháng 4 2017

a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)

Ta có: \(\left|x-3\right|\ge0\forall x\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)

Lại có: \(\left|y+3\right|\ge0\forall y\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)

 \(\Rightarrow P_{MIN}=2011\)

Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)

11 tháng 4 2019

Ta có:\(\left(x+y-3\right)^4\ge0;\left(x-2y\right)^2\ge0\Rightarrow\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)

\(\Rightarrow A=\left(x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)

Dấu bằng xảy ra khi và chỉ khi:

\(\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=3\\x=2y\end{cases}}\Rightarrow2y+y=3\Rightarrow y=1\Rightarrow x=2\)

Vậy \(A_{min}=2012\Leftrightarrow x=2\)

14 tháng 4 2019

cảm ơn bạn nhiều nhưng mình không biết kích

Bài  1 :

a) Vì ( x + 1 )2 ≥ 0 ∀ x

=> M = ( x + 1 )2 - 3 ≥ -3

Dấu "=" xảy ra <=> ( x + 1 )2 = 0

<=> x + 1 = 0 <=> x = -1

b) Vì ( y + 3 )2 ≥ 0 ∀ x

=> N = 5 - ( y + 3 )2 ≥ 5

Dấu "=" xảy ra <=> ( y + 3 )2 = 0

<=> y  + 3 = 0 <=> y = -3

27 tháng 9 2021

tim tim undefined

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

b.x+y+xy=3

=>x+y(x+1)=3

=>(x+1)+y(x+1)=4

=>(y+1)(x+1)=4

ta có bảng sau

x+1-11-442-2
y+1-44-112-2
x-20-531-3
y-53-201-3

 

a.(x2+5)2+4 nhỏ nhất =>(x2+5)2 nhỏ nhất=>x2+5 nhỏ nhất=>x2+5\(\ge\)0+5=5=>x2+5 nhỏ nhất =5

=>GTNN của (x2+5)2+4=52+4=25+4=29

5 tháng 4 2017

a. (x+2)2 >= 0

(y-1/5)2 >= 0

=> MinC = -10 khi x = -2, y = 1/5

b. (2x-3)2 + 5 >= 5

D đạt max khi mẫu đạt min (Mẫu > 0)

=> MaxD = 4/5 khi x = 3/2