Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}=\sqrt{\left(x+1\right)^2}-\sqrt{\left(1-x\right)^2}\)
= | x+1 | - | 1-x | \(\ge\left|x+1+1-x\right|=\left|2\right|=2\)
dấu "=" xảy ra <=> \(\left(x+1\right)\left(1-x\right)\ge0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\\1-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\le0\\1-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-1\\x\le1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\end{matrix}\right.\)
<=> \(-1\le x\le1\)
Vậy min C = 1 khi và chỉ khi \(-1\le x\le1\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
\(P=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{2x+3\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\left(\sqrt{x}+1\right)-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\sqrt{x}+10-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{6}{\sqrt{x}+1}\)
b) Để P nguyên tố thì \(\frac{6}{\sqrt{x}+1}\) nguyên tố
Để \(P\inℕ^∗\) thì \(\sqrt{x}+1\inƯ\left(6\right)\)
Mà P nguyên tố \(\Rightarrow\frac{6}{\sqrt{x}+1}=\left\{2;3\right\}\Rightarrow\sqrt{x}+1=\left\{2;3\right\}\)
Với \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với \(\sqrt{x}+1=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy ...........
Sửa đề: \(M=2019\sqrt{x-2}+2020\sqrt{10-y}\)
+Có: \(\sqrt{x-2}\ge với\forall x\\ \sqrt{10-y}\ge0với\forall x\\ \Rightarrow2019\sqrt{x-2}+2020\sqrt{10-y}\ge0\\ \Leftrightarrow M\ge0\)
+Dấu ''='' xảy ra khi
\(\sqrt{x-2}=0\\ \Leftrightarrow x=2\)
\(\sqrt{10-y}=0\\ \Leftrightarrow y=10\)
+Vậy \(M_{min}=0\) khi \(x=2,y=10\)
a, P>0
Có \(P^2=x+2\sqrt{x\left(2-x\right)}+2-x=2+2\sqrt{2x-x^2}=\sqrt{1-\left(x^2-2x+1\right)}+2=2+\sqrt{1-\left(x-1\right)^2}\)
Luôn có: \(1-\left(x-1\right)^2\le1\)=> \(0\le\sqrt{1-\left(x-1\right)^2}\le1\)<=> \(0\le2\sqrt{1-\left(x-1\right)^2}\le4\)
<=> \(2\le2+2\sqrt{1-\left(x-1\right)^2}\le2+2\)
<=> \(2\le P^2\le4\)
<=> \(\sqrt{2}\le P\le2\)(do P>0)
minP xảy ra <=> \(\sqrt{1-\left(x-1\right)^2}=0\)
<=> \(\left(x-1\right)^2=1\) <=> \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)(t/m)
maxP xảy ra<=> \(\sqrt{1-\left(x-1\right)^2}=1\)
<=> \(\left(x-1\right)^2=0\) <=> x=1(t/m)
b, Q>0 (đk :\(2019\le x\le2020\))
Có \(Q^2=x-2019+2\sqrt{\left(x-2019\right)\left(2020-x\right)}+2020-x=1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\)
Luôn có: \(0\le2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le\left(x-2019\right)+\left(2020-x\right)\)
<=> \(1\le1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le1+1\)
<=> \(1\le Q^2\le2\)
<=> \(1\le Q\le\sqrt{2}\)( do Q>0)
minQ=1 <=> \(\sqrt{\left(x-2019\right)\left(2020-x\right)}=0\)
<=> \(\left(x-2019\right)\left(2020-x\right)=0\)
<=> x=2019(tm) hoặc x=2020(t/m)
maxQ=\(\sqrt{2}\) <=> \(x-2019=2020-x\) <=> \(x=\frac{4039}{2}\) (tm)
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
Ta có \(P=2020+\sqrt{x^2-10x+26}\)\(=2020+\sqrt{\left(x^2-10x+25\right)+1}\)\(=2020+\sqrt{\left(x-5\right)^2+1}\)
Nhận thấy \(\left(x-5\right)^2\ge0\)\(\Leftrightarrow\left(x-5\right)^2+1\ge1\)\(\Leftrightarrow\sqrt{\left(x+5\right)^2+1}\ge1\)\(\Leftrightarrow A\ge2021\)
Dấu "=" xảy ra khi \(x-5=0\Leftrightarrow x=5\)
Vậy GTNN của P là 2021 khi \(x=5\)
đó nha