K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

vì (2x+1)2 \(\ge\)0 nên GTNN của M là 2014 <=> 2x+1=0 => 2x=-1 => x=-1/2

18 tháng 4 2018

A=x2+2x+2

=x2+2x+1 +1

= (x2+2x+1)+1

=(x+1)2+1

do (x+1)2 ≥ 0 ∀x

=> (x+1)2+1 ≥1 ∀x

=> min A=1(dáu "="xảy ra khi

x+1=0

=> x=-1

vậy min A=1 khi x=-1

19 tháng 1 2017

Bài 1:

Ta có: \(-\left|x\right|\le0\)

\(-\left(y-4\right)^4\le0\)

\(\Rightarrow-\left|x\right|-\left(y-4\right)^4\le0\)

\(\Rightarrow A=10-\left|x\right|-\left(y-4\right)^4\le10\)

Vậy \(MAX_A=10\) khi \(x=0;y=4\)

Bài 2:

Ta có: \(\left|2x+6\right|\ge0\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left|2x+6\right|+\left(x-y\right)^2\ge0\)

\(\Rightarrow B=\left|2x+6\right|+\left(x-y\right)^2-5\ge-5\)

Vậy \(MIN_B=-5\) khi \(x=-3;y=-3\)

19 tháng 1 2017

bạn trả lời rõ hơn chỗ suy ra =>-|x|-(y-4)^4 và => |2x+6|+(x-y)^2 đc ko???

26 tháng 8 2016

a/ A = x2 + (y - 1)4 - 3

Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0

=> A = x2 + (y - 1)4 - 3 \(\ge\)-3

Đẳng thức xảy ra khi: x = 0 và y - 1 = 0  => x = 0 và y = 1

Vậy GTNN của A là -3 khi x = 0 và y = 1

b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995 

Mà: 3x2\(\ge\)0  => B = 3x2 + 1995 \(\ge\)1995

Đẳng thức xảy ra khi: 3x2 = 0  => x = 0

Vậy GTNN của B là 1995 khi x = 0

c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15 

Mà: x2\(\ge\)0  => x2 - 15\(\ge\)-15

Đẳng thức xảy ra khi: x2 = 0  => x = 0

Vậy GTNN cảu C là -15 khi x = 0

19 tháng 3 2021

Tìm GTLN hoặc GTNN của biểu thức M=3.x2+8

Trả lời:

Ta thấy x2>=0

=> M>=8

lấy đạo hàm M =>M'= 6x=0 tại x=0 (đạt cực trị tại x=0)

=> Biểu thức M có GTNN tại x=0 (lúc đó M=8)

Giả sử với x là số nguyên, GTLN của biểu thức là \(\infty\)

Để có GTNN thì x phải là số 0. Nếu x là số dương thì kết quả dương, còn nếu x là số âm thì kết quả cũng dương.

Khi đó M = 3 * 0^2 + 8 = 8

3 tháng 8 2020

Bài làm:

Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)

\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\left(\forall x,y\right)\)

\(\Rightarrow B\ge2020\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)

Vậy \(Min_B=2020\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)

Ta có: \(\left(3x+27\right)^{20}\ge0\forall x\)

             \(\left(y-1\right)^2\ge0\forall y\)

=> \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\forall x;y\)

=> \(B\ge2020\)

Vậy GTNN của B là 2020 <=> x=-9, y=1

28 tháng 6 2016

A=(x-1)2+(y+2)2

     Vì (x-1)2\(\ge\)0;(y+2)2\(\ge\)0

   \(\Rightarrow A=\left(x+1\right)^2+\left(y+2\right)^2\ge0\)

              Vậy A đạt GTLN khi x+1=0;x=-1

                                                y+2=0;y=-2

  Max A bằng 0 khi x=-1;y=-2

27 tháng 1 2017

vì \(5x^2\ge0\Rightarrow5x^2-1\ge-1\)
\(A=5x^2-1\ge-1\)
\(A_{min}=-1\)khi và chỉ khi \(5x^2=0\Rightarrow x=0\)
 

14 tháng 2 2019

a là 10 vì x2 luôn >=0

b là 11 vì (x-9)2\(\ge\)0 và \(|y-10|\ge0\)