Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2+2x+2
=x2+2x+1 +1
= (x2+2x+1)+1
=(x+1)2+1
do (x+1)2 ≥ 0 ∀x
=> (x+1)2+1 ≥1 ∀x
=> min A=1(dáu "="xảy ra khi
x+1=0
=> x=-1
vậy min A=1 khi x=-1
Bài 1:
Ta có: \(-\left|x\right|\le0\)
\(-\left(y-4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y-4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y-4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=4\)
Bài 2:
Ta có: \(\left|2x+6\right|\ge0\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left|2x+6\right|+\left(x-y\right)^2\ge0\)
\(\Rightarrow B=\left|2x+6\right|+\left(x-y\right)^2-5\ge-5\)
Vậy \(MIN_B=-5\) khi \(x=-3;y=-3\)
bạn trả lời rõ hơn chỗ suy ra =>-|x|-(y-4)^4 và => |2x+6|+(x-y)^2 đc ko???
a/ A = x2 + (y - 1)4 - 3
Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0
=> A = x2 + (y - 1)4 - 3 \(\ge\)-3
Đẳng thức xảy ra khi: x = 0 và y - 1 = 0 => x = 0 và y = 1
Vậy GTNN của A là -3 khi x = 0 và y = 1
b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995
Mà: 3x2\(\ge\)0 => B = 3x2 + 1995 \(\ge\)1995
Đẳng thức xảy ra khi: 3x2 = 0 => x = 0
Vậy GTNN của B là 1995 khi x = 0
c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15
Mà: x2\(\ge\)0 => x2 - 15\(\ge\)-15
Đẳng thức xảy ra khi: x2 = 0 => x = 0
Vậy GTNN cảu C là -15 khi x = 0
Tìm GTLN hoặc GTNN của biểu thức M=3.x2+8
Trả lời:
Ta thấy x2>=0
=> M>=8
lấy đạo hàm M =>M'= 6x=0 tại x=0 (đạt cực trị tại x=0)
=> Biểu thức M có GTNN tại x=0 (lúc đó M=8)
Giả sử với x là số nguyên, GTLN của biểu thức là \(\infty\)
Để có GTNN thì x phải là số 0. Nếu x là số dương thì kết quả dương, còn nếu x là số âm thì kết quả cũng dương.
Khi đó M = 3 * 0^2 + 8 = 8
Bài làm:
Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\left(\forall x,y\right)\)
\(\Rightarrow B\ge2020\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy \(Min_B=2020\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Ta có: \(\left(3x+27\right)^{20}\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\forall x;y\)
=> \(B\ge2020\)
Vậy GTNN của B là 2020 <=> x=-9, y=1
A=(x-1)2+(y+2)2
Vì (x-1)2\(\ge\)0;(y+2)2\(\ge\)0
\(\Rightarrow A=\left(x+1\right)^2+\left(y+2\right)^2\ge0\)
Vậy A đạt GTLN khi x+1=0;x=-1
y+2=0;y=-2
Max A bằng 0 khi x=-1;y=-2
vì \(5x^2\ge0\Rightarrow5x^2-1\ge-1\)
\(A=5x^2-1\ge-1\)
\(A_{min}=-1\)khi và chỉ khi \(5x^2=0\Rightarrow x=0\)
vì (2x+1)2 \(\ge\)0 nên GTNN của M là 2014 <=> 2x+1=0 => 2x=-1 => x=-1/2