Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(2y=a\)thì ta được
\(P=\frac{1}{x^2+a^2}+\frac{1}{xa}=\left(\frac{1}{x^2+a^2}+\frac{1}{2xa}\right)+\frac{1}{2xa}\)
\(\ge\frac{4}{x^2+a^2+2ax}+\frac{2}{\left(x+a\right)^2}=\frac{6}{\left(x+a\right)^2}\ge\frac{6}{4}=\frac{3}{2}\)
Ta có
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0
<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0
<=> A2 + 5A + y2 + 4 = 0
<=> y2 = - 4 - 5A - A2 \(\ge0\)
<=> \(-4\le A\le-1\)
Vậy GTLN là -1, GTBN là - 4
\(P=\frac{2x^2+y^2-2xy}{xy}=\frac{2x}{y}+\frac{y}{x}-2=\frac{7x}{4y}+\left(\frac{x}{4y}+\frac{y}{x}-2\right)\)
Áp dụng BĐT Cô - Si cho các số dương :
\(\frac{x}{4y}+\frac{y}{x}\ge2\sqrt{\frac{x}{4y}.\frac{y}{x}}=1\)
\(\frac{7x}{4y}\ge\frac{7.2y}{4y}=\frac{7}{2}\) do \(x\ge2y\)
Do đó : \(P\ge\frac{7}{2}+1-2=\frac{5}{2}\)
Vậy \(P_{min}=\frac{5}{2}\) khi x\(=2y\)
Chúc bạn học tốt !!!
A = (x^2-2xy+y^2)+(4y^2+y+1/16)+32079/16
= (x-y)^2+(2y+1/4)^2+32079/16 >= 32079/16
Dấu "=" xảy ra <=> x-y=0 và 2y+1/4 = 0 <=> x=y=-1/8
Vậy GTNN của A = 32079/16 <=> x=y=-1/8
Tk mk nha
Ta xó A=\(\left(x^2-2xy+y^2\right)+4y^2+y+\frac{1}{16}+\frac{32079}{16}=\left(x-y\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{32079}{16}\ge\frac{32079}{16}\)
dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\y=-\frac{1}{8}\end{cases}\Leftrightarrow x=y=-\frac{1}{8}}\)
^_^
MÌNH XIN SỬA LẠI ĐỀ \(^{C=x^2-xy+y^2-x+y+1}\)
Vào CHTT