\(A=x^4-2x^3+3x^2-4x+2015\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

\(x^4-2x^3+3x^2-4x+2015=\left(x^2-x\right)^2+2\left(x-1\right)^2+2013\)

Mà \(\left(x^2-x\right)^2\ge0\forall x\)\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow Min=2013\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

19 tháng 2 2019

Cách này cũng khá giống của bạn Nguyễn Văn Hạ nhưng mình nghĩ dễ bến đối hơn chỗ \(x^4-2x^3+x^2\rightarrow x^2\left(x-1\right)^2\)

\(A=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2015\right)\)

\(=x^2\left(x-1\right)^2+2\left(x-1\right)^2+2013\ge2013\)

Dấu "=" xảy ra khi x - 1 = 0 tức là x = 1

Vậy \(A_{min}=2013\Leftrightarrow x=1\)

19 tháng 7 2018

1)Ta có A =x- 4x + 1

             = x2 - 2.2.x + 22 - 3

             = ( x - 2 )-3

  Với x \(\inℝ\), ( x - 2 )\(\ge\)

  \(\Rightarrow\)(x - 2 )- 3 \(\ge\)-3

Vậy GTNN của A là -3

2) Ta có B = 4x+ 4x + 11

                   = ( 2x )+ 2.2x.1 + 12 +10

                  = ( 2x + 1 )+10

*tương tự câu 1*

3) *tương tự câu 2*

4) Ta có P = ( 2x + 1 )2 + ( x + 2)

                   = [ ( 2x )+ 2.2x.1 + 12  ] + [ x+ 2.x.2 + 22 ]

                    = 4x2 + 4x +1 + x2 + 4x + 4 

                    = 5x2 + 8x + 5

       Với x\(\inℝ\), 5x2 \(\ge\)0

             mà GTNN của 8x + 5 là 5

\(\Rightarrow\) GTNN của 5x2 + 8x + 5  là 5

  Vậy GTNN của  ( 2x + 1 )2 + ( x + 2) là 5

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

30 tháng 11 2018

\(N=\frac{3x^2-4x}{x^2+1}=\frac{4x^2-4x+1-\left(x^2+1\right)}{x^2+1}=\frac{\left(2x-1\right)^2}{x^2+1}-1\ge-1\forall x\)

Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy \(MinN=-1\Leftrightarrow x=\frac{1}{2}\)

\(P=\frac{2x+1}{x^2+2}=\frac{4x+2}{2x^2+4}=\frac{x^2+4x+4-\left(x^2+2\right)}{2x^2+4}=\frac{\left(x+2\right)^2}{2x^2+4}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy \(MinP=-\frac{1}{2}\Leftrightarrow x=-2\)

17 tháng 9 2019

ghi đề hẳn hoi coi

12 tháng 7 2017

Bài 1:

\(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\Rightarrowđpcm\)Bài 2:

\(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)Với mọi giá trị của x ta có:

\(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy GTNN của A là \(\dfrac{11}{4}\)

Để \(A=\dfrac{11}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

b, \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4=5x^2+5=5\left(x^2+1\right)\)

Với mọi giá trị của x ta có:

\(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow5\left(x^2+1\right)\ge5\)

Vậy \(Min_B=5\)

Để B = 5 thì \(x^2=0\Rightarrow x=0\)

Bài 3:

\(A=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+5\le5\)Vậy \(Max_A=5\)

Để A = 5 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\)

Với mọi giá trị của x ta có :

\(\left(2-x\right)^2\ge0\Rightarrow4-\left(2-x\right)^2\le4\)

Vậy \(Max_B=4\)

Để B = 4 thì \(2-x=0\Rightarrow x=2\)

12 tháng 7 2017

Bài 1: CMR các biểu thức sau luôn dương với mọi giá trị của biểu thức

\(2x^2+2x+1\)

Ta có: \(2x^2>2x\forall x\)\(2x^2\ge0\)

\(\Rightarrow2x^2-2x\ge0\)

Vậy \(2x^2+2x+1\ge1\) (đpcm)

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt