Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+2xy+2y^2+2x-4y+2013\)
\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)
mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)
\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)
\(\Rightarrow Min\left(A\right)=2003\)
Ta có
\(A=x^2+2y^2+2xy-2x-8y+2017\)
\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)
\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Đặt \(2y=a\)thì ta được
\(P=\frac{1}{x^2+a^2}+\frac{1}{xa}=\left(\frac{1}{x^2+a^2}+\frac{1}{2xa}\right)+\frac{1}{2xa}\)
\(\ge\frac{4}{x^2+a^2+2ax}+\frac{2}{\left(x+a\right)^2}=\frac{6}{\left(x+a\right)^2}\ge\frac{6}{4}=\frac{3}{2}\)
\(P=x^2+2y^2+2xy-6x-4y+13\)
\(=\left(x^2+2xy+y^2\right)+y^2-6\left(x+y\right)+2y+13\)
\(=\left(x+y\right)^2-2\left(x+y\right)3+9+y^2+2y+1+3\)
\(=\left(x+y-3\right)^2+\left(y+1\right)^2+3\)
Mà \(\left(x+y-3\right)^2\ge0\forall x;y\)
\(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow P\ge3\forall x;y\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y-3=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Vậy \(P_{Min}=3\Leftrightarrow\left(x;y\right)=\left(4;-1\right)\)
Ta có: P = x2 + 2y2 + 2xy - 6x -4y +13
= (x2 + y2 + 9 + 2xy - 6x - 6y) + (y2 + 2y + 1) + 3
= (x + y - 3)2 + (y + 1)2 + 3
Ta thấy (x + y - 3)2 ≥ 0 với mọi x,y
(y + 1)2 ≥ 0 với mọi x,y
⇔ (x + y - 3)2 + (y + 1)2 ≥ 0 với mọi x,y
⇔ (x + y - 3)2 + (y + 1)2 +3 ≥ 3 với mọi x,y
hay P ≥ 3 với mọi x,y
Dấu "=" xảy ra
⇔ \(\left\{{}\begin{matrix}x+y-3=0\\y+1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+y-3=0\\y=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-1-3=0\\y=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Vậy GTNN của biểu thức P là 3 khi x=4 và y=-1.
biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?
Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)
\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)
\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)
Chúc bạn học tốt ~
Đặt \(B=-x^2-2x-y^2-8y-10\)
\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)
\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)
\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)
Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)
Chúc bạn học tốt ~
A=x2+2y2+2xy+2x-4y+2013
=x2+y2+1+2xy+2x+2y+y2-6y+9+2003
=(x+y+1)2+(y-3)2+2003
Min A=2003 tại x=-4;y=3
A= (X2+2XY+Y2) + 2(X+Y)+1+Y2-6Y+9+2003
A=(X+Y)2+ 2(X+Y)+1+(Y-3)2+2003
A=(X+Y+1)2+(Y-3)2+2003
=> A>=2003
(DẤU "=" XẢY RA KHI X=-4;Y=3)