\(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2020

\(A=\sqrt{\left(x+\dfrac{1}{2}\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}-x\right)^2+\left(\dfrac{\sqrt{7}}{2}\right)^2}\)

\(A\ge\sqrt{\left(x+\dfrac{1}{2}+\dfrac{1}{2}-x\right)^2+\left(\sqrt{7}\right)^2}=2\sqrt{2}\)

\(A_{min}=2\sqrt{2}\) khi \(x+\dfrac{1}{2}=\dfrac{1}{2}-x\Leftrightarrow x=0\)

Bạn cũng có thể bình phương A lên

12 tháng 12 2020

A dùng mincopki à

2 tháng 7 2019

Ngại làm lần 2 quá bạn ơi 

Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

20 tháng 11 2019

a) \(\sqrt{x}-x=-\left(x-\sqrt{x}\right)\)

\(=-\left[\left(\sqrt{x}\right)^2-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}\right]+\frac{1}{4}\)

\(=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Vậy GTLN của bt là \(\frac{1}{4}\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)

5 tháng 10 2018

ké với 

5 tháng 10 2018

ĐKXĐ ....\(-1\le x\le2\)

\(A^2=.....=\left(\sqrt{\left(4-x\right)\left(x +1\right)}-\sqrt{\left(2-x\right)\left(x+2\right)}\right)^2+2\)

\(\Rightarrow A^2\ge2\)(1)

Xét hiệu \(\left(-x^2+2x+8\right)-\left(-x^2+x+2\right)=x+6>0\)(Vì \(-1\le x\le2\))

\(\Rightarrow A>0\)(2)

Từ (1) và (2) ta có: \(A\ge\sqrt{2}\)

Dấu = xảy ra khi......x=0(TM)

Vậy minA=\(\sqrt{2}\)khi \(x=0\)