Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2}{2}-\frac{x}{6}+3\)
\(2A=x^2-\frac{x}{3}+6=x^2-2.x\frac{1}{6}+\frac{1}{36}+\frac{35}{36}\)
\(2A=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\ge\frac{35}{36}\)
\(\Rightarrow A\ge\frac{35}{72}\)Dấu "=" xảy ra khi \(x=\frac{-1}{6}\)
b)\(B=x^4-4x^3+6x^2-4x+5\)
\(B=\left(x^4-4x^3+4x^2\right)+\left(2x^2-4x+2\right)+3\)
\(B=\left(x^2-2x\right)^2+2\left(x+1\right)^2+3\ge3\)
Dấu "=" xảy ra khi:\(x=0;-1;2\)
Ta có: A = 2x2 - 4x + 3 = 2(x2 - 2x + 1) + 1 = 2(x - 1)2 + 1
Do 2(x - 1)2 \(\ge\)0 \(\forall\)x => 2(x - 1)2 + 1 \(\ge\)1
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 1 <=> x = 1
Ta có: B = \(\frac{-7}{x^2+6x+2012}=\frac{-7}{\left(x^2+6x+9\right)+2003}=-\frac{7}{\left(x+3\right)^2+2003}\)
Do (x + 3)2 \(\ge\)0 \(\forall\)x => (x + 3)2 + 2003 \(\ge\)2003 \(\forall\)x
=> \(\frac{7}{\left(x+3\right)^2+2003}\le\frac{7}{2003}\forall x\) => \(-\frac{7}{\left(x+3\right)^2+2003}\ge-\frac{7}{2003}\forall x\)
Dấu "=" xảy ra <=> x+ 3 = 0 <=> x = -3
Vậy MinB = -7/2003 <=> x = -3
b, \(B=\frac{\frac{x}{x+3}-\frac{9}{x^2+6x+9}}{\frac{3}{x+3}}=\frac{\frac{x}{x+3}-\frac{3^2}{x^2+2\cdot3\cdot x+3^2}}{\frac{3}{x+3}}\)
\(=\frac{\frac{x}{x+3}-\left(\frac{3}{x+3}\right)^2}{\frac{3}{x+3}}=1-\frac{3}{x+3}\)
a, Vậy điều kiện là \(x\ne3\)
c, \(B=\frac{1}{3}\Leftrightarrow1-\frac{3}{x+3}=\frac{1}{3}\)
\(\Rightarrow\frac{3}{x+3}=\frac{2}{3}\Leftrightarrow x=\frac{3}{2}\)
\(H=2x^2-x+4==2\left(x^2-\frac{1}{2}x+2\right)\)
\(=2\left[x^2-2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{31}{8}\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\)
Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)
=> \(2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-\frac{1}{4}\right)^2=0\Rightarrow x=\frac{1}{4}\)
Vậy \(H_{min}=\frac{31}{8}\)khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x\right)\)
\(=\frac{1}{2}\left(x^2+2\cdot x\cdot3+3^2\right)-\frac{9}{2}\)
\(=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\)
Vì \(\left(x+3\right)^2\ge0\forall x\)
=> \(\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3
Vậy \(I_{min}=-\frac{9}{2}\)khi x = -3
1) \(H=2x^2-x+4=2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{31}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow x=\frac{1}{4}\)
Vậy Min(H) = 31/8 khi x = 1/4
2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x+9\right)-\frac{9}{2}=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\frac{1}{2}\left(x+3\right)^2=0\Rightarrow x=-3\)
Vậy Min(I) = -9/2 khi x = -3
1)Ta có A =x2 - 4x + 1
= x2 - 2.2.x + 22 - 3
= ( x - 2 )2 -3
Với x \(\inℝ\), ( x - 2 )2 \(\ge\)0
\(\Rightarrow\)(x - 2 )2 - 3 \(\ge\)-3
Vậy GTNN của A là -3
2) Ta có B = 4x2 + 4x + 11
= ( 2x )2 + 2.2x.1 + 12 +10
= ( 2x + 1 )2 +10
*tương tự câu 1*
3) *tương tự câu 2*
4) Ta có P = ( 2x + 1 )2 + ( x + 2)2
= [ ( 2x )2 + 2.2x.1 + 12 ] + [ x2 + 2.x.2 + 22 ]
= 4x2 + 4x +1 + x2 + 4x + 4
= 5x2 + 8x + 5
Với x\(\inℝ\), 5x2 \(\ge\)0
mà GTNN của 8x + 5 là 5
\(\Rightarrow\) GTNN của 5x2 + 8x + 5 là 5
Vậy GTNN của ( 2x + 1 )2 + ( x + 2)2 là 5
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
a) \(x^2+6x-3\)
\(=x^2+6x+9-12\)
\(=\left(x+3\right)^2-12\ge-12\)
Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(A=5+\frac{\left(x-2\right)^2}{x^2}\)
min\(A=5\), xảy ra tại \(x=2\)
Điều kiện xác định của A là x khác 0.
A=\(\frac{6x^2-4x+4}{x^2}=\frac{5x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=5+\frac{\left(x-2\right)^2}{x^2}\)
Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\)=> \(5+\frac{\left(x-2\right)^2}{x^2}\ge5\)=> \(A\ge5\)
Với A= 5 => \(5+\frac{\left(x-2\right)^2}{x^2}=5\)=> \(\frac{\left(x-2\right)^2}{x^2}=0\)=> \(\left(x-2\right)^2=0\)=> \(x-2=0\)=> \(x=2\)
Vậy GTNN của A là 5 đạt được tại x=2.