Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(\sqrt{x-2}+\sqrt{3}\right)\left(\sqrt{x-2}-\sqrt{3}\right)}{\sqrt{x-2}-\sqrt{3}}=\sqrt{x-2}+\sqrt{3}>=\sqrt{3}\)
Dấu = xảy ra khi x=2
Bài 2:
a: \(\sqrt{4-x^2}>=0\)
Dấu '=' xảy ra khi x=2 hoặc x=-2
b: \(\sqrt{x^2-x+3}=\sqrt{x^2-x+\dfrac{1}{4}+\dfrac{11}{4}}\)
\(=\sqrt{\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}>=\dfrac{\sqrt{11}}{2}\)
Dấu '=' xảy ra khi x=1/2
c: \(x+\sqrt{x}+1>=1\)
=>1/(x+căn x+1)<=1
Dấu '=' xảy ra khi x=0
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Bài 1 : ĐK : \(x>3\) ; \(y>5\) ; \(z>4\)
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(\Leftrightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)
Theo BĐT Cô - Si cho hai số không âm ta có :
\(\left\{{}\begin{matrix}\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\dfrac{4\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{4}=4\\\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge2\sqrt{\dfrac{9\sqrt{y-5}}{\sqrt{y-5}}}=2\sqrt{9}=6\\\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge2\sqrt{\dfrac{25\sqrt{z-4}}{\sqrt{z-4}}}=2\sqrt{25}=10\end{matrix}\right.\)
\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)\ge20\)
\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=4\\y-5=9\\z-4=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=14\\z=29\end{matrix}\right.\left(TM\right)\)
Vậy \(x=7\) ; \(y=14\) ; \(z=29\)
ĐKXĐ :x\(\ge\)0;x\(\ne\)1;x\(\ne\)3
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{\left(\sqrt{x}-1\right)\left(x+16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
=\(\dfrac{x+16}{\sqrt{x}+3}\)
b, x =(\(\sqrt{2}-1)^2\)
Thay x =(\(\sqrt{2}-1)^2\)thỏa mãn đk vào a có:
A=\(\dfrac{\left(\sqrt{2}-1\right)^2+16}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)
=\(\dfrac{2-2\sqrt{2}+1+16}{\sqrt{2}-1}\)
=\(\dfrac{19\sqrt{2}+19-4-2\sqrt{2}}{2-1}\)
=\(17\sqrt{2}+15\)
a) \(\sqrt{x-5}-4\ge-4\)
Vậy GTNN của bt là - 4\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)
b) \(x-\sqrt{x}+1=x-\sqrt{x}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của bt là \(\frac{3}{4}\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
nếu cho x nguyên thì tôi làm đc