Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)
\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)
\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)
\(A=8\left(x-2\right)^4+8\ge8\)
Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)
Đặt x-2=y
=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
Khai triển A ta được
\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)
\(=8y^4+8=8\left(y^4+1\right)\ge8\)
Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2
Vậy Amin=8 khi x=2
ĐKXĐ : \(x\ne\left\{1;0\right\}\)
a) \(P=\left(\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)
\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)
\(P=\left(\dfrac{\left(x-1\right)\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{x^3-1}{x^3-1}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=1\cdot\dfrac{x^2+1}{2}\)
\(P=\dfrac{x^2+1}{2}\)
b) Vì \(x^2\ge0\forall x\)
\(\Rightarrow P\ge\dfrac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Mà ĐKXĐ \(x\ne0\)
=> ... đến đây ko biết làm :v
AI BIẾT LÀM HỘ ĐI
Cái này mk chưa học nên cx chưa rõ cách làm chính xác mong bạn thông cảm :)
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
a) \(A=25x^2+3y^2-10x+11\)
\(A=\left(5x-1\right)^2+3y^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=0\end{matrix}\right.\)
b) \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(B=2\left(x^2-14x+65\right)\)
\(B=2\left[\left(x-7\right)^2+16\right]\)
\(B=2\left(x-7\right)^2+32\ge32\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=7\)
c) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x-6=a\)
\(C=a\left(a+12\right)\)
\(C=a^2+12a+36-36\)
\(C=\left(a+6\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow a=-6\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\\ C=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)\\ C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\\ C=\left(x^2-5x\right)^2-6^2\\ C=\left(x^2-5x\right)^2-36\)
Ta có:
\(\left(x^2-5x\right)^2\ge0\\ \Rightarrow C=\left(x^2-5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi và chỉ khi:
(x2 - 5x)2 = 0 => x2 - 5x = 0 => x(x - 5) = 0
=> x = 5 hoặc x = 0
Vậy MinC = -36 <=> x = 5; x = 0
Lời giải:
Ta có: \(Q=\frac{(x+1)^2-x}{(x+1)^2}=1-\frac{x}{(x+1)^2}\)
\(Q=\frac{3}{4}+\frac{1}{4}-\frac{x}{(x+1)^2}=\frac{3}{4}+\frac{(x+1)^2-4x}{4(x+1)^2}\)
\(Q=\frac{3}{4}+\frac{(x-1)^2}{4(x+1)^2}\)
Vì \((x-1)^2; (x+1)^2> 0, \forall x\in\mathbb{R}\neq -1\)
\(\Rightarrow \frac{(x-1)^2}{4(x+1)^2}\geq 0\Rightarrow Q\geq \frac{3}{4}\)
Vậy GTNN của Q là $\frac{3}{4}$. Dấu bằng xảy ra khi \(x=1\)
1)
a) \(x^2+12x+36=\left(x+6\right)^2\)
b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
Tick nha
3)
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8\)
\(\Leftrightarrow-2x=7\)
\(\Rightarrow x=\dfrac{-7}{2}\)
b) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2\right)-5x+1=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3-10x^2+2x+4x^2-5x+1=28\)
\(\Leftrightarrow0-3x^2+23x+28=28\)
\(\Leftrightarrow-3x^2+23x=0\)
\(\Leftrightarrow-x\left(3x-23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\3x-23=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{3}\end{matrix}\right.\)
c) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6-2x^4-2x^2-1=0\)
\(\Leftrightarrow-5x^4+x^2-2=0\)
Đặt \(-5t^2+t-2=0\)
\(\Delta=1^2-4\left(-5\right)\left(-2\right)=-39< 0\)
\(\Rightarrow PTVN\)