Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\geq \frac{(a+b+c)^2}{a+b+b+c+c+a}\)
\(\Leftrightarrow A\geq \frac{a+b+c}{2}=3\)
Vậy \(A_{\min}=3\)
Dấu bằng xảy ra khi \(a=b=c=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)
\(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)
\(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)
Cộng 3 cái vào, ta có
A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)
Vậy A min = 24
Neetkun ^^
![](https://rs.olm.vn/images/avt/0.png?1311)
tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Tìm max:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(2x+\sqrt{5-x^2})^2\leq (x^2+5-x^2)(2^2+1)=25\)
\(\Rightarrow A\leq 5\)
Vậy \(A_{\max}=5\Leftrightarrow x=2\)
Tìm min:
ĐKXĐ: \(5-x^2\geq 0\Leftrightarrow -\sqrt{5}\leq x\leq \sqrt{5}\)
Do đó : \(A=2x+\sqrt{5-x^2}\geq 2x\geq -2\sqrt{5}\)
Vậy \(A_{\min}=-2\sqrt{5}\Leftrightarrow x=-\sqrt{5}\)
Bài 2 bạn xem xem có viết nhầm đề bài không nhé.
\(A=\frac{3a}{2a-b}+\frac{3c}{2c-b}-2\)
Chỉ cần cho $b$ càng nhỏ thì giá trị của $A$ càng nhỏ rồi, mà lại không có điều kiện gì của $b$ ?
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=2ab\cdot\dfrac{-15}{b^2a}=\dfrac{-30}{b}\)
b: \(=\dfrac{2}{3}\cdot\left(1-a\right)=\dfrac{2}{3}-\dfrac{2}{3}a\)
c: \(=\dfrac{\left|3a-1\right|}{\left|b\right|}=\dfrac{3a-1}{b}\)
d: \(=\left(a-2\right)\cdot\dfrac{a}{-\left(a-2\right)}=-a\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)
\(=a-1\)
b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)
c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)
\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Áp dụng BĐT Svac
⇒\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\text{≥}\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
Vì a+b+c=6
⇒\(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{6^2}{12}=\dfrac{36}{12}=3\)
Còn lại thì bạn tự làm tiếp nha
Bài này hình như tính giá trị biểu thức của abc,2 nhỉ