K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=9x^2+6x-7\)

\(\Rightarrow A=\left(3x\right)^2+2\cdot3x+1-8\)

\(\Rightarrow A=\left(3x+1\right)^2-8\ge-8\)

Vậy GTNN của A là -8

5 tháng 7 2018

A\(=9x^2+6x-7\)

\(=9\left(x^2+\dfrac{2}{3}x-\dfrac{7}{9}\right)\)

\(=9\left(x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{-8}{9}\right)\)

\(=9\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\)

\(\left(x+\dfrac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\ge-8\)

Dấu = xảy ra khi x+\(\dfrac{1}{3}=0\Rightarrow x=\dfrac{-1}{3}\)

Vậy GTNN của A=-8 khi x=\(\dfrac{-1}{3}\)

9 tháng 11 2016

Ta có :

A = 2x2 - 10x + 11

= 2( x2 - 2.x.\(\frac{5}{2}\) + \(\frac{25}{4}\) ) - \(\frac{3}{2}\)

= 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\)

Ta có :

(x - \(\frac{5}{2}\))2 \(\ge0\)

<=> 2(x - \(\frac{5}{2}\))2 \(\ge0\)

<=> 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\) \(\ge-\frac{3}{2}\)

Vậy Amin = - \(\frac{3}{2}\) [ Khi (x - \(\frac{5}{2}=0=>x=\frac{5}{2}\))

 
19 tháng 9 2017

      B = (x-2)(x-5)(x2-7x-10)

    =(x2-7x+10)(x2-7x-10)

    =(x2-7x)2-102

     =(x2-7x)2-100

=>GTNN của B là 100 <=>x2-7x=0

             x(x-7)=0

        =>x=0 hoặc x=7

Vậy GTNN của B là 100 khi x=0 hoặc x=7

     

    

17 tháng 10 2018

A=x^2+2x.3/2+3/2^2+11/2

=(x+3/2)^2+11/2>=11/2

28 tháng 9 2015

 

4x2+5y2-4xy-16y+22

=4x2-4xy+y2+4y2-16xy+16+6

=(2x+y)2+(2x-4)2+6

Vì (2x+y)2;(2x-4)2\(\ge\)0 nên (2x+y)2+(2x-4)2+6\(\ge\)6

Dấu "=" xảy ra khi 2x-4=0 và 2x+y=0

                     <=>  x=2 và 2.2+y=0

                    <=>x=2 và y=-4

Vậy GTNN của biểu thức là 6 tại x=2;y=-4

 

7 tháng 7 2017

a. Để biểu thức là bình phương 1 hiệu thì

 \(9x^2-30x+A=\left(3x\right)^2-2.3x.5+5^2=\left(3x-5\right)^2\)\(\Rightarrow A=25\)

b. Tương tự\(A-52xy^2+169y^4=\left(13y^2\right)^2-2.13.y^2.2x+4x^2=\left(13y^2-2x\right)^2\)

\(\Rightarrow A=4x^2\)

19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1

2 tháng 10 2015

GTNN LÀ :-43

GTLN LÀ:-43