Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=x^2+2y^2+2xy-2x-8y+2017\)
\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)
\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Ta Có :
\(M=x^2+2y^2+2xy-2x-6y+2020\)
\(M=\left(x^2+2xy-2x\right)+2y^2-6y+2020\)
\(M=\left(x^2+2x\left(y-1\right)+\left(y-1\right)^2\right)+2y^2-6y+2020-\left(y-1\right)^2\)
\(M=\left(x+y-1\right)^2+2y^2-6y-y^2+2y-1+2020\)
\(M=\left(x+y-1\right)^2+\left(y^2-4y+4\right)+2015\)
\(M=\left(x+y-1\right)^2+\left(y-2\right)^2+2015\)
Nhận xét : Vì \(\left(x+y-1\right)^2\ge0\) với \(\forall x,y\)
Và \(\left(y-2\right)^2\ge0\) với \(\forall y\)
\(\Rightarrow M\ge2015\) với \(\forall x,y\)
Vậy GTNN của M là 2015 đạt được khi
\(\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
tik mik nha !!!
x2 + 2y2 + 2xy - 2x - 6y + 2020
= x2 + 2xy + y2 + y2 - 2x - 6y + 2020
= (x+y)2 + y2 - 4y + 4 - 2x - 2y + 2016
= (x+y)2 + (y-z)2 - 2(x+y) + 2016
= (x+y)2 - 2(x+y) + 1 + (y-z)2 + 2015
= (x+y-1)2 + (y-z)2 + 2015 ≥ 2015
Dấu "=" xảy ra khi x+y-1=0 và y-2=0
(=) x=-1 y=2
Vậy GTNN của biểu thức trên là 2015 khi x=-1 và y=2
Chúc bạn học tốt ^^
Cho \(x\)và \(y\)thỏa mãn \(x^2\)+ \(2xy+6x+6y+2y^2+8=0\)
Tìm GTLN. GTNN của biểu thức \(B=x+y+2010\)
1)
\(A=\left(x-y+1\right)^2+\left(y-2\right)^2+5\ge5\)
GTNN A=5 khi y=2 và x=1
2)
\(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)
ta có \(A=x^2+y^2+9-2xy-6x+6y+x^2-4x+4+2004\)
\(=\left(x-y-3\right)^2+\left(x-2\right)^2+2004\)
vì \(\left(x-y-3\right)^2+\left(x-2\right)^2\ge0\)
=> \(A\ge2004\)
dấu = xảy ra <=> x=2 và y=-1