Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
a) Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
b) Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\) ta có: \(x+y+z\le x+x+x=3x\Leftrightarrow xyz\le3x\Leftrightarrow yz\le3\)
Vì \(x;y;z\) là số nguyên dương nên: \(yz\in\left\{1;2;3\right\}\)
Với \(yz=1\Leftrightarrow y=z=1\Leftrightarrow x+2=x\left(l\right)\)
Với \(yz=2\Leftrightarrow y=2;z=1\left(y\ge z\right)\Leftrightarrow x=3\)
Với \(yz=3\Leftrightarrow y=3;z=1\left(y\ge z\right)\Leftrightarrow x=2\)
Vậy: \(x;y;z\) là hoán vị của 1;2;3 hay:
\(\left(x;y;z\right)=\left\{3;2;1\right\};\left(3;1;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(1;2;3\right);\left(1;3;2\right)\)
A = |2x - 2| + |2x - 2013|
= |2x - 2| + |2013 - 2x| \(\ge\) |2x - 2 + 2013 - 2x| = 2011
Dấu "=" xảy ra khi: (2x - 2).(2013 - 2x) \(\ge\) 0
Trường hợp 1: \(\hept{\begin{cases}2x-1\ge0;2013-2x\ge0\\x\ge\frac{1}{2};x\ge\frac{2013}{2}\end{cases}}\)
=> x \(\ge\) 2013/2
Trường hợp 2: \(\hept{\begin{cases}2x-1\le0;2013-2x\le0\\x\le\frac{1}{2};x\le\frac{2013}{2}\end{cases}}\)
=> x \(\ge\)1/2
Từ Trường hợp 1:
=> Ko có giá trị nào thỏa mãn yêu cầu của đề bài
F = | 2x - 2 | + | 2x - 2003 |
F = | 2x - 2 | + | -( 2x - 2003 ) |
F = | 2x - 2 | + | 2003 - 2x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001
Đẳng thức xảy ra khi ab ≥ 0
=> ( 2x - 2 )( 2003 - 2x ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)
2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )
Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)
G = | 2x - 3 | + 1/2| 4x - 1 |
G = | 2x - 3 | + | 2x - 1/2 |
G = | -( 2x - 3 ) | + | 2x - 1/2 |
G = | 3 - 2x | + | 2x - 1/2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2
Đẳng thức xảy ra khi ab ≥ 0
=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0
Xét 2 trường hợp :
1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)
2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )
=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)
H = | x - 2018 | + | x - 2019 | + | x - 2020 |
H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]
H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]
H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]
Ta có : | x - 2019 | ≥ 0 ∀ x
| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )
=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2
Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)
=> x = 2019
=> MinH = 2 <=> x = 2019
\(A=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=2-\frac{5}{x+2}\)
Để \(A\)nhỏ nhất thì \(\frac{5}{x+2}\)lớn nhất mà \(x\)nguyên nên \(x+2\)đạt giá trị nguyên dương nhỏ nhất
suy ra \(x+2=1\Leftrightarrow x=-1\).
Vậy \(minA=\frac{2\left(-1\right)-1}{-1+2}=-3\).
\(A=\left|2x-2\right|+\left|2x-2013\right|\)
\(A=\left|2x-2\right|+\left|2013-2x\right|\)
\(A\ge\left|2x-2+2013-2x\right|\)
\(A\ge2011\)Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
A=|2x-2|+|2x-2013|
ta có |2x-2|=|2-2x|>hoặc=2-2x
. |2x-2013|>hoặc=2x-2013
=) A> hoặc = 2-2x+2x-2013
A> hoặc = -2011
a) Ta có: 3|x - 14| \(\ge\)0 \(\forall\)x
=> 3|x - 14| + 4 \(\ge\)4 \(\forall\)x
=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)
Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14
Vậy MaxA = 3/2 <=> x = 14
b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6 + 2 + 2x = -4 khi x \(\le\)-3
a) \(A=\left|x+2\right|+\left|x-3\right|\)
\(A=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
\(\Rightarrow A\ge5\)
Dấu bằng xảy ra
\(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)
\(\Leftrightarrow-2\le x\le3\)
Vậy .............................
\(\left|2x-6\right|=\hept{\begin{cases}2x-6\left(khi2x-6\ge0\right)\\6-2x\left(khi2x-6< 0\right)\end{cases}}\)
\(\left|2x-6\right|=\hept{\begin{cases}2x-6khix\ge3\\6-2xkhix< 3\end{cases}}\)
\(\left|2x-2\right|=\hept{\begin{cases}2x-2khi2x-2\ge0\\2-2xkhi2x-2< 0\end{cases}}\)
\(\left|2x-2\right|=\hept{\begin{cases}2x-2khix\ge1\\2-2xkhix< 1\end{cases}}\)
KHI \(x< 1\):
\(6-2x+2-2x=6\)
\(\Rightarrow-4x+8=6\)
\(\Rightarrow4x=2\Rightarrow x=\frac{1}{2}\)(THỎA MÃN)
KHI \(1\le x< 3\)
\(6-2x+2x-2=6\)
\(\Rightarrow4=6\)9VÔ NGHIỆM)
KHI: \(x\ge3\)
\(\Rightarrow2x-6+2x-2=6\)
\(\Rightarrow4x=14\Rightarrow x=\frac{7}{2}\)(THỎA MÃN)
Áp dụng bất đẳng thức trị tuyệt đối,ta có:
\(\left|2x+2\right|+\left|2x-2019\right|=\left|2x+2\right|+\left|2019-2x\right|\)
\(\ge\left|2x+2+2019-2x\right|\)
\(=2021\)
Dấu bằng xảy ra khi và chỉ khi:
\(\left(2x+2\right)\left(2x-2019\right)\ge0\)
\(\Rightarrow-1\le x\le\frac{2019}{2}\)
\(\Rightarrow-1\le x\le1009\)
Vậy \(A_{min}=2021\Leftrightarrow-1\le x\le1009\)
zZz Phan Gia Huy zZz
Dấu \("="\Leftrightarrow-1\le x\le1009,5\)