Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2\left|x-3\right|+\left|2x-10\right|=\left|2x-3\right|+\left|10-2x\right|\ge\left|2x-3+10-2x\right|=7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-3\right)\left(10-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{3}{2}\le x\le5\)
b) \(B\left|\frac{1}{4}x-8\right|+\left|2-\frac{1}{4}x\right|\ge\left|\frac{1}{4}x-8+2-\frac{1}{4}x\right|=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\frac{1}{4}x-8\right)\left(2-\frac{1}{4}x\right)\ge0\)\(\Leftrightarrow\)\(8\le x\le32\)
a) Đặt \(A=10+2x-5x^2\)
\(-A=5x^2-2x-10\)
\(-5A=25x^2-10x-50\)
\(-5A=\left(25x^2-10x+1\right)-51\)
\(-5A=\left(5x-1\right)^2-51\)
Do \(\left(5x-1\right)^2\ge0\forall x\)
\(\Rightarrow-5A\ge-51\)
\(A\le\frac{51}{5}\)
Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)
b) Đặt \(B=x^2-6x+10\)
\(B=\left(x^2-6x+9\right)+1\)
\(B=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(B\ge1\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy Min B \(=1\Leftrightarrow x=3\)
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
Vì \(x+y=4\Rightarrow x=4-y\left(1\right)\)
\(A=\left(x-2\right)y=2017\left(2\right)\)
Từ (1) và (2) suy ra:\(A=\left(4-y-2\right)y=2017\)
\(A=\left(2-y\right)y=2017\)
\(\Rightarrow2y-y^2-2017=0\)
\(\Rightarrow2018-\left(y^2-2y+1\right)=0\)
\(\Rightarrow2018-\left(y-1\right)^2=0\)
Vì \(-\left(y-1\right)^2\le0\)
\(\Rightarrow2018-\left(y-1\right)^2\le2018\)
Dấu = xảy ra khi y-1=0;y=1
Vậy Max A = 2018 khi y = 1
Ta có:
\(x+y=4\)
\(\Rightarrow x=4-y\)
Thay \(x=4-y\) vào biểu thức \(A,\)ta có:
\(A=\left(4-y-2\right).y=2017\)
\(A=\left(2-y\right).y=2017\)
\(\Leftrightarrow-y^2+2y-2017=0\)
Tới đây mình nhấn máy tính ra kết quả nhé!
Vậy \(GTNN\) của \(A=-2016\)
\(A=10-4\left|x-2\right|\)
Vì \(\left|x-2\right|\ge0\)
\(\Leftrightarrow4\left|x-2\right|\ge0\)
\(\Leftrightarrow A=10-4\left|x-2\right|\le10\)
Vậy GTLN của biểu thức A là 10
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy GTNN của biểu thức là 2
Giải:
<br class="Apple-interchange-newline"><div></div>A=10−4|x−2|
Vì |x−2|≥0
⇔4|x−2|≥0
⇔A=10−4|x−2|≤10
Vậy GTLN của biểu thức A là 10
⇔x−2=0⇔x=2
Vậy GTNN của biểu thức là 2