Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2x2 - 6x
= \(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)
Q\(=\left(\sqrt{2}x-6\right)^2-36\)
Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)
Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)
Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)
a/ \(A=x^2+y^2-2x+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow A\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Vậy....
b/ \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)
\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)
\(\Leftrightarrow B\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)
\(a)\)
\(A=2x^2+x\)
\(\Leftrightarrow A=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
\(MinA=\frac{-1}{8}\)khi \(x=\frac{-1}{4}\)
\(b)\)
\(B=x^2+2x+y^2-4y+6\)
\(\Leftrightarrow B=x^2+2x+1+y^2-4y+4+1\)
\(\Leftrightarrow B=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu '' = '' xảy ra khi: \(x=-1;y=2\)
\(c)\)
\(C=4x^2+4x+9y^2-6y-5\)
\(\Leftrightarrow C=4x^2+4x+1+9y^2-6y+1-7\)
\(\Leftrightarrow C=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
Dấu '' = '' xáy ra khi: \(x=\frac{-1}{2};y=\frac{1}{3}\)
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
a)\(A=\left(x-5\right)^2\ge0\)
\(\Rightarrow Min=0\)dấu \(=\)xảy ra khi \(x=5\)
a) \(A=x^2-10x+25\)
\(A=\left(x^2-10x+25\right)+0\)
\(A=\left(x-5\right)^2+0\)
Mà \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow A\ge0\)
Dấu "=" xảy ra khi : \(x-5=0\Leftrightarrow x=5\)
Vậy ...
Ta có: M = x2 + 6y + 10 + y2 - x
M = ( x2 - x + 1/4 ) + ( y2 + 6y + 9) + 3/4
M = ( x - 1/2)2 + ( y + 3 )2 + 3/4
- Vì ( x - 1/2 )2 >= 0 với mọi x; ( y + 3 )2 >= 0 với mọi y => M >= 3/4 với moi x,y.
Dấu = xra <=> x - 1/2 = 0 và y + 3 = 0
<=> x = 1/2 và y = -3.
1.
\(P=x^2+6y+10+y^2-x\)
\(=x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+y^2+2\times y\times3+3^2-3^2+10\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min P = \(\frac{3}{4}\) khi x = \(\frac{1}{2}\) và y = \(-3\)
2.
\(N=x-x^2\)
\(=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)
Vậy Max N = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)
(x-1/2)2 + (y + 3)2 -1/4 +10 -9
GTNN = 3/4
(giải theo pp học vnen)
Ta có : A = x2 + 2x + y2 + 6y + 10
=> A = (x2 + 2x + 1) + (y2 + 6y + 9)
=> A = (x + 1)2 + (y + 3)2
Mà : (x + 1)2 và (y + 3)2 \(\ge0\forall x,y\)
Nên : A = (x + 1)2 + (y + 3)2 \(\ge0\forall x,y\)
Vậy Amin = 0 tại x = -1 và y = -3
\(A=x^2+2x+y^2+6y+10\)
\(=x^2+2x+y^2+6y+1+9\)
\(=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)\)
\(=\left(x+1\right)^2+\left(y+3\right)^2\)
vì \(\left(x+1\right)^2\ge0\forall x;\left(y+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\forall x\)
vậy \(MinA=0\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-3\end{cases}}\)