![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi\(A=20+\left(50-x\right)^4\)
\(\left(50-x\right)^4\ge0\)
\(\Rightarrow A\ge20\)
Dấu "=" xảy ra khi 50 - x = 0 <=> x = 50
Vậy Min A = 20 <=> x = 50
b) Gọi \(B=\left|80-x\right|-20\)
\(\left|80-x\right|\ge0\)
\(\Rightarrow B\ge0-20=-20\)
Dấu "=" xảy ra khi x = 80
Vậy Min B = -20 <=> x = 80
c) Gọi \(C=\left|47+x\right|-18\)
\(\left|47+x\right|\ge0\)
\(\Rightarrow C\ge-18\)
Dấu "=" xảy ra khi x = -47
Vậy MinC = -18 <=> x = -47
a) Vì \(\left(50-x\right)^4\ge0\left(\forall x\right)\Rightarrow20+\left(50-x\right)^4\ge20\)
Dấu "=" xảy ra \(\Leftrightarrow\left(50-x\right)^4=0\Leftrightarrow50-x=0\Leftrightarrow x=50\)
Vậy GTNN của biểu thức bằng 20 khi và chỉ khi x = 50
b) Vì \(\left|80-x\right|\ge0\left(\forall x\right)\Rightarrow\left|80-x\right|-20\ge-20\)
Dấu "=" xảy ra \(\Leftrightarrow\left|80-x\right|=0\Leftrightarrow80-x=0\Leftrightarrow x=80\)
Vậy GTNN của biểu thức bằng -20 khi và chỉ khi x = 80
c) Vì \(\left|47+x\right|\ge0\left(\forall x\right)\Rightarrow\left|47+x\right|-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow\left|47+x\right|=0\Leftrightarrow47+x=0\Leftrightarrow x=-47\)
Vậy GTNN của biểu thức bằng -18 khi và chỉ khi x = -47
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt \(A=10+2x-5x^2\)
\(-A=5x^2-2x-10\)
\(-5A=25x^2-10x-50\)
\(-5A=\left(25x^2-10x+1\right)-51\)
\(-5A=\left(5x-1\right)^2-51\)
Do \(\left(5x-1\right)^2\ge0\forall x\)
\(\Rightarrow-5A\ge-51\)
\(A\le\frac{51}{5}\)
Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)
Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)
b) Đặt \(B=x^2-6x+10\)
\(B=\left(x^2-6x+9\right)+1\)
\(B=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(B\ge1\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy Min B \(=1\Leftrightarrow x=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\left|4-2x\right|-2016\)
Ta có:\(\left|4-2x\right|\ge0\Rightarrow\left|4-2x\right|-2016\ge0-2016=-2016\Rightarrow A\ge-2016\)
\(\Rightarrow MIN_A=-2016\Leftrightarrow4-2x=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
Vậy MINA=-2016 khi x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
A=x2+5x+8
A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)
\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)
\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)
\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
=>GTNN của A là 7/4
Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Ta có :
\(2a^2+24a+80=2a^2+24a+72+8=2\left(a+6\right)^2+8\)
Vì \(\left(a+6\right)^2\ge0\forall a\Rightarrow2\left(a+6\right)^2+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(a+6\right)^2=0\Leftrightarrow a+6=0\Leftrightarrow a=-6\)
Vậy GTNN của bt trên là 8 <=> a = - 6
Ta có :
\(2a^2+24a+80=2a^2+24a+72+8=2\left(a+6\right)^2+8\)
Vì \(\left(a+6\right)^2\ge0\forall a\Rightarrow2\left(a=6\right)^2+8\ge8\)
Dấu '=' xảy ra \(\Leftrightarrow2\left(a+6\right)^2=0\)
\(\Leftrightarrow a+6=0\Leftrightarrow a=-6\)
Vậy GTNN của biểu thức trên là 8 .\(\Leftrightarrow a=-6\)