K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

Ta có : 

\(2a^2+24a+80=2a^2+24a+72+8=2\left(a+6\right)^2+8\)

Vì \(\left(a+6\right)^2\ge0\forall a\Rightarrow2\left(a+6\right)^2+8\ge8\) 

Dấu "=" xảy ra \(\Leftrightarrow2\left(a+6\right)^2=0\Leftrightarrow a+6=0\Leftrightarrow a=-6\)

Vậy GTNN của bt trên là 8 <=> a = - 6

13 tháng 8 2020

Ta có : 

\(2a^2+24a+80=2a^2+24a+72+8=2\left(a+6\right)^2+8\)

Vì \(\left(a+6\right)^2\ge0\forall a\Rightarrow2\left(a=6\right)^2+8\ge8\)

Dấu '=' xảy ra \(\Leftrightarrow2\left(a+6\right)^2=0\)

\(\Leftrightarrow a+6=0\Leftrightarrow a=-6\)

Vậy GTNN của biểu thức trên là 8 .\(\Leftrightarrow a=-6\)

23 tháng 7 2018

a) Gọi\(A=20+\left(50-x\right)^4\)

\(\left(50-x\right)^4\ge0\)

\(\Rightarrow A\ge20\)

Dấu "=" xảy ra khi 50 - x = 0 <=> x = 50

Vậy Min A = 20 <=> x = 50

b) Gọi \(B=\left|80-x\right|-20\)

\(\left|80-x\right|\ge0\)

\(\Rightarrow B\ge0-20=-20\)

Dấu "=" xảy ra khi x = 80

Vậy Min B = -20 <=> x = 80

c) Gọi \(C=\left|47+x\right|-18\)

\(\left|47+x\right|\ge0\)

\(\Rightarrow C\ge-18\)

Dấu "=" xảy ra khi x = -47

Vậy MinC = -18 <=> x = -47

23 tháng 7 2018

a) Vì \(\left(50-x\right)^4\ge0\left(\forall x\right)\Rightarrow20+\left(50-x\right)^4\ge20\)

Dấu "=" xảy ra \(\Leftrightarrow\left(50-x\right)^4=0\Leftrightarrow50-x=0\Leftrightarrow x=50\)

Vậy GTNN của biểu thức bằng 20 khi và chỉ khi x = 50

b) Vì \(\left|80-x\right|\ge0\left(\forall x\right)\Rightarrow\left|80-x\right|-20\ge-20\)

Dấu "=" xảy ra \(\Leftrightarrow\left|80-x\right|=0\Leftrightarrow80-x=0\Leftrightarrow x=80\)

Vậy GTNN của biểu thức bằng -20 khi và chỉ khi x = 80

c) Vì \(\left|47+x\right|\ge0\left(\forall x\right)\Rightarrow\left|47+x\right|-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow\left|47+x\right|=0\Leftrightarrow47+x=0\Leftrightarrow x=-47\)

Vậy GTNN của biểu thức bằng -18 khi và chỉ khi x = -47

16 tháng 3 2018

a) Đặt \(A=10+2x-5x^2\)

\(-A=5x^2-2x-10\)

\(-5A=25x^2-10x-50\)

\(-5A=\left(25x^2-10x+1\right)-51\)

\(-5A=\left(5x-1\right)^2-51\)

Do \(\left(5x-1\right)^2\ge0\forall x\)

\(\Rightarrow-5A\ge-51\)

\(A\le\frac{51}{5}\)

Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)

b) Đặt \(B=x^2-6x+10\)

\(B=\left(x^2-6x+9\right)+1\)

\(B=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\forall x\)

\(B\ge1\)

Dấu "=" xảy ra khi :

\(x-3=0\Leftrightarrow x=3\)

Vậy Min B \(=1\Leftrightarrow x=3\)

18 tháng 12 2016

Đặt \(A=\left|4-2x\right|-2016\)

Ta có:\(\left|4-2x\right|\ge0\Rightarrow\left|4-2x\right|-2016\ge0-2016=-2016\Rightarrow A\ge-2016\)

\(\Rightarrow MIN_A=-2016\Leftrightarrow4-2x=0\Leftrightarrow2x=4\Leftrightarrow x=2\)

Vậy MINA=-2016 khi x=2

8 tháng 7 2016

gtnn của biểu thức trên là \(\frac{31}{8}\)

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

13 tháng 5 2016

x=0 biểu thức có gt là 8

13 tháng 5 2016

A=x2+5x+8

A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)

\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)

\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)

\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)

\(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

=>GTNN của A là 7/4

Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)