Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=5x^2+2y^2+4xy-2x+4y+2020\)
\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)
\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)
\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)
=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015
=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]
=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015
giá trị nhỏ nhất là 2015
\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)
\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)
\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)
\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)
\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
\(N = 5x^2 + 2y^ 2 + 4xy - 2x + 4y + 2015\)
\(N = ( 4x^ 2 + 4xy + y ^ 2 ) + ( x^2 - 2x + 1 )+\)
\(( y^2 + 4y + 4 ) + 2010\)
\(N = ( 2x + y )^2 + ( x - 1 )^2 + ( y + 2 )^2 + 2010\)
\(\ge\)\(2010\)
\(Dấu " = " xảy ra \)\(\Leftrightarrow\) \(2x + y = 0 và\)\(x - 1 = 0 và y + 2 = 0\)
\(\Rightarrow\)\(x = 1 và y = - 2\)
\(Min N = 2010\)\(\Leftrightarrow\)\(x = 1 và y = - 2\)
Đặt \(A=5x^2+2y^2+2xy-2x+4y+2015\)
\(\Rightarrow\) \(5A=25x^2+10y^2+10xy-10x+20y+10075\)
\(\Leftrightarrow\) \(5A=25x^2+10\left(y-1\right)x+\left(10y^2+20y+10075\right)\)
\(=\left(5x\right)^2+2.5x\left(y-1\right)+\left(y-1\right)^2+\left(9y^2+22y+10074\right)\)
\(=\left(5x+y-1\right)^2+9\left(y^2+\frac{22}{9}y+\frac{121}{81}\right)+\frac{90545}{9}\)
\(=\left(5x+y-1\right)^2+9\left(y+\frac{11}{9}\right)^2+\frac{90545}{9}\ge\frac{90545}{9}\) suy ra \(A\ge\frac{90545}{9}:5=\frac{18109}{9}\)
Vậy \(A_{min}=\frac{18109}{9}\) \(\Leftrightarrow\) \(\hept{\begin{cases}5x+y-1=0\\y+\frac{11}{9}=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{4}{9}\\y=\frac{-11}{9}\end{cases}}\)
Done!
TA có :
\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)
Vì \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)
Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1
BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H
H=\(X^2+2XY+Y^2-2X-2Y\)
H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)
H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1
H=\(\left(X+Y-1\right)^2-1\)
VẬY GTNN LÀ -1