\(A=x^4+6x^3+13x^2+12x+12\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

\(A=x^4+6x^3+13x^2+12x+12\)

     \(=\left(x^4+6x^3+19x^2+30x+25\right)-6x^2-18x-30+17\)

      \(=\left(x^4+6x^3+19x^2+30x+25\right)-6\left(x^2+3x+5\right)+17\)

       \(=\left(x^2+3x+5\right)^2-6\left(x^2+3x+5\right)+17\)

Đặt \(t=x^2+3x+5\)

Khi đó \(A=t^2-6t+17=t^2-2.t.3+9+8=\left(t-3\right)^2+8\ge8\)

Dấu "=" xảy ra <=> t - 3 = 0 <=> t = 3

                                          <=> \(x^2+3x+5=3\Leftrightarrow x^2+3x+2=0\)

                                           \(\Leftrightarrow x^2+x+2x+2=0\)

                                            \(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

                                             \(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy AMin = 8 khi và chỉ khi x = -1 hoặc x = -2

18 tháng 4 2019

CÁC BẠN GIẢI NHANH HỘ NHÚN VỚI

5 tháng 3 2020

Cách mình dài hơn ạ : Violympic toán 8

NV
5 tháng 3 2020

\(A=x^4+6x^3+9x^2+4x^2+12x+12\)

\(=\left(x^2+3x\right)^2+4\left(x^2+3x\right)+4+8\)

\(=\left(x^2+3x+2\right)^2+8\ge8\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)

\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)

\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)

\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)

\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

b: Để A>0 thì x-2>0

hay x>2

Để A>-1 thì A+1>0

\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)

=>x/x-2>0

=>x>2 hoặc x<0

19 tháng 12 2016

Đề sai một chút nha bạn : mình sửa bạn thử tham khảo xem đúng không \(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}\)

Mình làm luôn nha 

Giải

Theo bài ra , ta có : 

\(P=\frac{12x^2-6x+4}{\left(x-1\right)^2}=\frac{12\left(x^2-2x+1\right)+18x-8+10x-10+10}{\left(x-1\right)^2}=\frac{12\left(x-1\right)^2+18\left(x-1\right)+10}{\left(x-1\right)^2}=12+\frac{18}{x-1}+\frac{10}{\left(x-1\right)^2}\)

Đặt \(\frac{2}{x-1}=y\)

Đến đây bạn tự làm tiếp nhé 

19 tháng 12 2016

Đề đúng rồi đó bạn #Phát

16 tháng 1 2019

a, GTLN của A = 6 

7 tháng 10 2019

a) \(x^2+6x-3\)

\(=x^2+6x+9-12\)

\(=\left(x+3\right)^2-12\ge-12\)

Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

7 tháng 10 2019

b) \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của bt là 7\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

11 tháng 12 2017

a/ \(\left(a^2+b^2\right)+\left(a^2+1\right)+\left(b^2+1\right)\ge2ab+2a+2b\)

\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

b/ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) đúng

c/ \(M=x^4-6x^3+13x^2-12x-5\)

Đặt \(x^2-3x=a\)thì ta có:

\(M=a^2+4a-5=\left(a+2\right)^2-9\ge-9\)

Dấu = xảy ra khi:

\(x^2-3x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)