\(x^4-8x^3+17x^2-8x+41\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

21 tháng 7 2017

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

1 tháng 4 2019

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

24 tháng 8 2019

a,1,A=\(\sqrt{2x^2-8x+17}\)=\(\sqrt{2\left(x^2-4x+4\right)+9}\)=\(\sqrt{2\left(x-2\right)^2+9}\)

\(\left(x-2\right)^2\ge0\) vs mọi x

=> \(2\left(x-2\right)^2+9\ge9\) vs mọi x

<=> \(A=\sqrt{2\left(x-2\right)^2+9}\ge\sqrt{9}=3\)

Dấu "=" xảy ra <=> x=2

Vậy min A=3 <=> x=2

2,C=\(x-2\sqrt{x-4}+3\)( x\(\ge4\))

= \(\left(x-4\right)-2\sqrt{x-4}+1+6\)

=\(\left(\sqrt{x-4}-1\right)^2+6\)

\(\left(\sqrt{x-4}-1\right)^2\ge0\) với mọi \(x\ge4\)

=> C= \(\left(\sqrt{x-4}-1\right)^2+6\ge6\) với mọi x\(\ge4\)

Dấu "=" xảy ra <=> \(\sqrt{x-4}=1\) <=> \(x=5\) (t/m)

Vậy minC=6 <=>x=5

3,D=\(\sqrt{3x^2-12x+16}+\sqrt{x^4-8x^2+17}\)

=\(\sqrt{3\left(x^2-4x+4\right)+4}+\sqrt{x^4-8x^2+16+1}\)

=\(\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\)

\(\sqrt{3\left(x-2\right)^2+4}\ge\sqrt{0+4}=2\)

\(\sqrt{\left(x^2-4\right)^2+1}\ge\sqrt{0+1}=1\)

=> \(D=\sqrt{3\left(x-2\right)^2+4}+\sqrt{\left(x^2-4\right)^2+1}\ge2+1\)

<=> D \(\ge3\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2=0\\x^2-4=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\x^2=4\end{matrix}\right.\) (t/m)

=> x=2

Vậy minD=3 <=>x=2

b, B=\(\sqrt{-3x^2+18x+22}=\sqrt{49-3\left(x^2-6x+9\right)}=\sqrt{49-3\left(x-3\right)^2}\)

\(3\left(x-3\right)^2\ge0\) vs mọi x

<=> 49\(-3\left(x-3\right)^2\le49\) vs mọi x

<=> \(\sqrt{49-3\left(x-3\right)^2}\le\sqrt{49}=7\)

<=> B\(\le7\)

Dấu "=" xảy ra <=> x=3

Vậy max B=7 <=> x=3

\(A=\frac{2x^2-4x+2+x^2-4x+4+4}{x^2-2x+1}\)

\(=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

Dấu ''='' xảy ra khi GTNN của A=2

8 tháng 9 2019

A\(\frac{2x^2-4x+2+x^2-4x+4}{x^2-2x+1}=2+\left(\frac{x-2}{x-1}\right)^2\ge2\)

dấu = xảy ra x=2

chúc ban hk tốt