\(x^2+5y^2+4y+3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

\(A=x^2+5\left(y+\frac{2}{5}\right)^2+\frac{11}{5}\ge\frac{11}{5}\)

Dấu "=" xảy ra khi x = 0, y = -2/5

VẬy...

24 tháng 6 2019

\(A=x^2+5\left(y^2+\frac{4}{5}y+\frac{3}{5}\right)\) \()\) 

A= \(x^2+5[\left(y+\frac{2}{5}\right)^2+\frac{11}{25}]\) 

A=\(x^2+5\left(y+\frac{2}{5}\right)^2+\frac{11}{5}\) 

vì x^2\(\ge0\forall x\in R\) 

\(5(y+\frac{2}{5})^2\ge0\forall x\in R\) 

=>minA>=-11/5

dấu = xảy ra <=>x=0;y=-2/5

vậy.....

hc tốt

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu 

16 tháng 8 2018

a) \(A=x^2-6x+25\)

\(=\left(x^2-6x\right)+25\)

\(=\left(x^2-6x+3^2\right)+16\)

\(=\left(x-3\right)^2+16\)

Ta có \(\left(x-3\right)^2\ge0\\ \Rightarrow\left(x-3\right)^2+16\ge16\)

Dấu ''='' xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy GTNT của A là 16 khi x = 3

16 tháng 8 2018

a) \(A=x^2-6x+25\)

\(A=x^2-2.x.3+9-9+25\)

\(A=\left(x-3\right)^2+16\)

\(\left(x-3\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

\(\Rightarrow Amin=16\Leftrightarrow x-3=0\Rightarrow x=3\)

Vậy Amin = 16 <=> x = 3

b) \(B=5x^2-4x+3\)

\(B=5\left(x^2-\dfrac{4}{5}x+\dfrac{3}{5}\right)\)

\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}-\dfrac{4}{25}+\dfrac{3}{5}\right)\)

\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{11}{25}\right)\)

\(B=5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\)

\(5\left(x-\dfrac{2}{5}\right)^2\ge0\) với mọi x

\(\Rightarrow5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\ge\dfrac{11}{5}\)

\(\Rightarrow Bmin=\dfrac{11}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Rightarrow x=\dfrac{2}{5}\)

Vậy Bmin = 11/5 <=> x = 2/5

c) \(C=x^2-4xy+5y^2-4y+13\)

\(C=x^2-2.x.2y+\left(2y\right)^2+y^2-2.y.2+4+9\)

\(C=\left(x-2y\right)^2+\left(y-2\right)^2+9\)

\(\left(x-2y\right)^2+\left(y-2\right)^2\ge0\) với mọi x và y

\(\Rightarrow\left(x-2y\right)^2+\left(y-2\right)^2+9\ge9\)

\(\Rightarrow Cmin=9\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)

Vậy Cmin = 9 <=> x = 4 và y = 2

4 tháng 5 2017

|5y+3| + 4y = 15 - |2-3y|

<=> |5y+3| + |2 - 3y| = 15 - 4y (1)

Lập bảng xét dấu |5y+3| và |2-3y|

y                  -3/5              2/3

5y+3      -               +                  +

2-3y       -              -                    +

Th1: y < -3/5

  (1) => -(5y +3) -(2 - 3y) = 15 - 4y

      <=> -5y -3 -2 + 3y = 15 - 4y

      <=>-5y + 3y + 4y =15 + 3 + 2

        <=> 2y     =20

        <=> y  =10 ( không TM)

Th2                    -3/5 ≤   x  ≤ 2/3

(1) => 5y + 3 - (2-3y)=15 - 4y

     <=> 5y + 3 + 3y -2 = 15 -4y

      <=> 5y + 3y + 4y = 15 - 3 -2

       <=> 12y =10

         <=> y = 5/6 (không TM)

Th3: x > 2/3

  (1) =>. 5y + 3 + 2 - 3y = 15 - 4y

       <=> 5y - 3y + 4y = 15-3-2

        <=> 6y            = 10

          <=> y          =  5/3 (TM)

Vậy phương trình có tập ngiệm là  S = { 5/3}

20 tháng 9 2019

|5y+3| + 4y = 15 - |2-3y|

<=> |5y+3| + |2 - 3y| = 15 - 4y (1)

Lập bảng xét dấu |5y+3| và |2-3y|

y                  -3/5              2/3

5y+3      -               +                  +

2-3y       -              -                    +

Th1: y < -3/5

  (1) => -(5y +3) -(2 - 3y) = 15 - 4y

      <=> -5y -3 -2 + 3y = 15 - 4y

      <=>-5y + 3y + 4y =15 + 3 + 2

        <=> 2y     =20

        <=> y  =10 ( không TM)

Th2                    -3/5 ≤   x  ≤ 2/3

(1) => 5y + 3 - (2-3y)=15 - 4y

     <=> 5y + 3 + 3y -2 = 15 -4y

      <=> 5y + 3y + 4y = 15 - 3 -2

       <=> 12y =10

         <=> y = 5/6 (không TM)

Th3: x > 2/3

  (1) =>. 5y + 3 + 2 - 3y = 15 - 4y

       <=> 5y - 3y + 4y = 15-3-2

        <=> 6y            = 10

          <=> y          =  5/3 (TM)

Vậy phương trình có tập ngiệm là  S = { 5/3}

học tốt

23 tháng 7 2018

\(C=2x^2+5y^2+4xy+8x-4y-100 \)

\(C=\left(x^2+8x+16\right)+\left(y^2-4y+4\right)+\left(x^2+4xy+4y^2\right)-120\)

\(C=\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)

Vậy GTNN của C là -120 khi x = -4; y = 2

23 tháng 7 2018

\(C=x^2+4xy+4y^2+x^2+8x+16+y^2-4y+4-120\)

\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\)

vậy GTNN của C là -120 khi \(x=-4;y=2\)

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 1:

a)

\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)

\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)

\(\geq 2013\)

Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)

b)

\(B=2x^2+5y^2+4xy-6+5x-9\)

\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)

\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)

Vậy GTNN của $B$ là $\frac{-485}{24}$

Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)

c)

\(C=x^2+xy+y^2-3x-3y+2018\)

\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)

\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)

\(\geq \frac{8060}{4}=2015\)

Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)

\(=(x-1)^2+(2y+1)^2-7\geq -7\)

\(\Rightarrow A\leq 7\)

Vậy GTLN của $A$ là $7$.

Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)

b)

ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)

\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)

Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm

\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)

\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)

Vậy $B_{\max}=\frac{97}{22}$