Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|
A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5
Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| \(\ge\) 42
Vậy MinB = 42 khi và chỉ khi:
\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|
\(\ge\) |x+5+7-x| + |x+2+8-x|
\(\ge\) |12| + |10|
\(\ge\) 12 + 10 \(\ge\) 22
Vậy MinC = 22 khi và chỉ khi :
-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7
d) D = |x+3|+|x−2|+|x−5|
Giải
D = |x+3|+|x−2|+|x−5|
\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)Tìm GTNN của biểu thức:
a) A = |x+5|+|x+17|
Giải
Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|
A = |-x-5|+|x+17| ≥ |-x-5+x+17| = | -12 | = 12
Dấu bằng xảy ra khi - 17 ≤ x ≤ -5
Vậy MinA=12 khi - 17 ≤ x ≤ -5
b) B = |x+8|+|x+13|+|x+50|
Giải
B = |x+8|+|x+13|+|x+50| ≥ (| x+8|+|-50-x |)+|x+13|
= (| x+8-50-x |)+|x+13|
= |-42| + |x+13|
= 42 + |x+13| ≥≥42
Vậy MinB = 42 khi và chỉ khi:
x+8 ≥ 0 ⇒x ≥ −8
x+13 = 0 => x = −13 .Vậy x=-13
x+50 ≥ 0 => x ≥ −50
c) C = |x+5|+|x+2|+|x−7|+|x−8|
Giải
C = |x+5|+|x+2|+|x−7|+|x−8|
=> |x+5| + |x+2| + |7-x| + |8-x|
≥ |x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22
Vậy MinC = 22 khi và chỉ khi :
-5 ≤ x ≤ 8 và -2 ≤ x ≤ 7 ⇔ -2 ≤ x ≤ 7
Với mọi x ta có :
\(\left|x+50\right|=\left|-x-50\right|\)
\(\Leftrightarrow\left|x+8\right|+\left|x+50\right|=\left|x+8\right|+\left|-50-x\right|\)
\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge\left|\left(x+8\right)+\left(-x-50\right)\right|\)
\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge42\)
Mà \(\left|x+13\right|\ge0\)
\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|+\left|x+13\right|+2018\ge2060\)
\(\Leftrightarrow A\ge2060\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+8\right)\left(-x-50\right)\ge0\left(1\right)\\\left|x+13\right|=0\left(2\right)\end{matrix}\right.\)
Từ \(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+8\ge0\\-x-50\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+8\le0\\-x-50\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-8\\-50\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-8\\-50\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-50\le x\le-8\end{matrix}\right.\)
\(\Leftrightarrow-50\le x\le-8\left(I\right)\)
Từ \(\left(2\right)\Leftrightarrow x+13=0\)
\(\Leftrightarrow x=-13\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow A_{Min}=2060\Leftrightarrow x=-13\)
a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)
\(=\left|x-1\right|+\left|2-x\right|+2016\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)
Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)
b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)
Ta lại có: \(\left|x-2\right|\ge0\) (2)
Từ (1)(2) suy ra: \(B\ge2\)
Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)
a) Ta có:
\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)
hay \(A\ge\left|1\right|+2016=1+2016=2017\)
=> \(A\ge2017\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.
b) Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)
hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)
\(\Rightarrow B\ge\left|x\right|\)
Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)
Để B nhỏ nhất
=> |x| phải nhỏ nhất (2)
Từ (1) và (2)
=> x=1
khi đó:
B=|x|=|1|=1
Vậy với x=1 thì B đạt GTNN và B=1.
bạn bui le anh kia. người ta ko biết làm thì kệ người ta chứ. tự nhiên đi bảo người ta là bị chập mạch. nếu bạn là tôi, bạn bị người khác nói là bị chập mạnh thì bạn thấy thế nào?
a) Ta có ;
|x - 23| + |x - 10| <=> |23 - x| + |x - 10|
|23 - x| + |x - 10| \(\ge\left|23-x+x-10\right|=13\)
=> Min = 13
Mấy câu kia chuyển đổi tý , xong là áp dụng BĐT |a| + |b| \(\ge\) |a + b| là được
a) Ta có :
\(\left|x-23\right|\ge0;\left|x-10\right|\ge0\)
\(\Rightarrow\left|x-23\right|+\left|x-10\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow x-23=0\) và \(x-10=0\)
=> x = 23 và x= 10
Vậy Biểu thức \(\left|x-23\right|+\left|x-10\right|\) đạt GTNN ki x = 23 và x=10
b) ,c) Tương tự nha bạn Bảo Trâm
\(\left|x+8\right|+\left|x+13\right|=\left|x+8\right|+\left|-x-13\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
\(\left|x+8\right|+\left|-x-13\right|\ge\left|x+8-x-13\right|=\left|-5\right|=5\)
\(\Rightarrow A\ge\left|x+50\right|+5\ge5\)
Dấu "=" xảy ra <=> |x + 50| = 0 => x = - 50
Vậy gtnn của A là 5 tại x = - 50