\(\left|x+8\right|+\left|x+13\right|+\left|x+50\right|\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

\(\left|x+8\right|+\left|x+13\right|=\left|x+8\right|+\left|-x-13\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

\(\left|x+8\right|+\left|-x-13\right|\ge\left|x+8-x-13\right|=\left|-5\right|=5\)

\(\Rightarrow A\ge\left|x+50\right|+5\ge5\)

Dấu "=" xảy ra <=> |x + 50| = 0 => x = - 50

Vậy gtnn của A là 5 tại x = - 50

21 tháng 6 2017

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|

A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5

Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| \(\ge\) 42

Vậy MinB = 42 khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|

\(\ge\) |x+5+7-x| + |x+2+8-x|

\(\ge\) |12| + |10|

\(\ge\) 12 + 10 \(\ge\) 22

Vậy MinC = 22 khi và chỉ khi :

-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7

d) D = |x+3|+|x−2|+|x−5|

Giải

D = |x+3|+|x−2|+|x−5|

\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|

A = |-x-5|+|x+17| |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 x -5

Vậy MinA=12 khi - 17 x -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| ≥≥42

Vậy MinB = 42 khi và chỉ khi:

x+8 ≥ 0 ⇒x ≥ −8

x+13 = 0 => x = −13 .Vậy x=-13

x+50 ≥ 0 => x ≥ −50

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

=> |x+5| + |x+2| + |7-x| + |8-x|

|x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22

Vậy MinC = 22 khi và chỉ khi :

-5 x 8 và -2 x 7 -2 x 7

31 tháng 3 2018

Với mọi x ta có :

\(\left|x+50\right|=\left|-x-50\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|x+50\right|=\left|x+8\right|+\left|-50-x\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge\left|\left(x+8\right)+\left(-x-50\right)\right|\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|\ge42\)

\(\left|x+13\right|\ge0\)

\(\Leftrightarrow\left|x+8\right|+\left|-x-50\right|+\left|x+13\right|+2018\ge2060\)

\(\Leftrightarrow A\ge2060\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+8\right)\left(-x-50\right)\ge0\left(1\right)\\\left|x+13\right|=0\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+8\ge0\\-x-50\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+8\le0\\-x-50\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-8\\-50\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-8\\-50\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-50\le x\le-8\end{matrix}\right.\)

\(\Leftrightarrow-50\le x\le-8\left(I\right)\)

Từ \(\left(2\right)\Leftrightarrow x+13=0\)

\(\Leftrightarrow x=-13\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow A_{Min}=2060\Leftrightarrow x=-13\)

26 tháng 10 2016

a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

\(=\left|x-1\right|+\left|2-x\right|+2016\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)

Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)

b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)

Ta lại có: \(\left|x-2\right|\ge0\) (2)

Từ (1)(2) suy ra: \(B\ge2\)

Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)

24 tháng 2 2017

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

24 tháng 2 2017

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.

29 tháng 10 2016

bó tay

29 tháng 10 2016

-100 taij x=0

29 tháng 10 2017

chập mạch câu đó mà ko biết

29 tháng 10 2017

bạn bui le anh kia. người ta ko biết làm thì kệ người ta chứ. tự nhiên đi bảo người ta là bị chập mạch. nếu bạn là tôi, bạn bị người khác nói là bị chập mạnh thì bạn thấy thế nào?

25 tháng 5 2017

a) Ta có ;

|x - 23| + |x - 10| <=> |23 - x| + |x - 10|

|23 - x| + |x - 10| \(\ge\left|23-x+x-10\right|=13\)

=> Min = 13

Mấy câu kia chuyển đổi tý , xong là áp dụng BĐT |a| + |b| \(\ge\) |a + b| là được

25 tháng 5 2017

a) Ta có :

\(\left|x-23\right|\ge0;\left|x-10\right|\ge0\)

\(\Rightarrow\left|x-23\right|+\left|x-10\right|\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow x-23=0\)\(x-10=0\)

=> x = 23 và x= 10

Vậy Biểu thức \(\left|x-23\right|+\left|x-10\right|\) đạt GTNN ki x = 23 và x=10

b) ,c) Tương tự nha bạn Bảo Trâm