Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a< b< c< d\) thì
\(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|< \left|x-a\right|+\left|x-a\right|+\left|x-a\right|+\left|x-a\right|=4\left|x-a\right|\)
a) Ta có : \(\left|3x+4\right|=2\left|2x-9\right|\)
=> \(\orbr{\begin{cases}3x+4=2\left(-2x+9\right)\\3x+4=2\left(2x-9\right)\end{cases}}\Rightarrow\orbr{\begin{cases}3x+4=-4x+18\\3x+4=4x-18\end{cases}}\Rightarrow\orbr{\begin{cases}7x=14\\-x=-22\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
=> \(x\in\left\{2;22\right\}\)
b) Ta có : \(\left|10x+7\right|< 37\)
=> -37 < 10x + 7 < 37
=> -44 < 10x < 30
=> -4,4 < x < 3
Vậy -4,4 < x < 3
c) |3 - 8x| \(\le\)19
=> \(-19\le3-8x\le19\)
=> \(\hept{\begin{cases}3-8x\ge-19\\3-8x\le19\end{cases}}\Rightarrow\hept{\begin{cases}22\ge8x\\-16\le8x\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{11}{4}\\x\ge-2\end{cases}}\Rightarrow-2\le x\le\frac{11}{4}\)
d) Ta có |x + 3| - 2x = |x - 4| (1)
Nếu x < -3
=> |x + 3| = -(x + 3) = -x - 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> -x - 3 - 2x = - x + 4
=> -3x - 3 = - x + 4
=> -2x = 7
=> x = - 3,5 (tm)
Nếu \(-3\le x\le4\)
=> |x + 3| = x + 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> x + 3 - 2x = -x + 4
=> -x + 3 = -x + 4
=> 0x = 1 (loại)
Nếu x > 4
=> |x + 3| = x + 3
=> |x - 4| = x + 4
Khi đó (1) <=> x + 3 - 2x = x - 4
=> -x + 3 = x - 4
=> -2x = -7
=> x = 3,5 (loại)
Vậy x = -3,5
Ta có : \(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\)
**Đặt \(B=\left|x-a\right|+\left|x-d\right|\)
ta có : \(B=\left|x-a\right|+\left|x-d\right|=\left|x-a\right|+\left|d-x\right|\)
Và \(B\ge\left|x-a+d-x\right|=d-a\)
Vậy GTNN của B là d-a .
Đạt được khi \(\left(x-a\right)\left(d-x\right)\ge0\)
giải ra ta được \(a\le x\le d\) (1)
**Đặt \(C=\left|x-b\right|+\left|x-c\right|\)
\(C=\left|x-b\right|+\left|c-x\right|\ge\left|x-b+c-x\right|\)
Suy ra \(C\ge c-b\)
Vậy GTNN của C là c-b
xảy ra khi \(\left(x-b\right)\left(c-x\right)\ge0\)
giải ra được \(b\le x\le c\) (2)
Từ (1) và (2)=> \(GTNN\)của A là \(d-a+c-b\)
xảy ra khi \(b\le x\le c\)
tik mik nha !!!