Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)\)
Đặt : \(x^2+9x+19=a\) . Ta được :
\(\left(a+1\right)\left(a-1\right)=a^2-1\)
Vì \(a^2\ge0\) với mọi x nên \(a^2-1\ge-1\)
Dấu \("="\) xảy ra khi \(a^2=0\Rightarrow a=0\Rightarrow x^2+9x+19=0\)
Mà : \(x^2+9x+19\ne0\) nên không có giá trị của x
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)
Ta có :
\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)
\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)
\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)
\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)
\(A=8\left(x-2\right)^4+8\ge8\)
Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)
Đặt x-2=y
=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)
Khai triển A ta được
\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)
\(=8y^4+8=8\left(y^4+1\right)\ge8\)
Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2
Vậy Amin=8 khi x=2
cách 1: đặt a = x+2 ,=> A= (a-3)4+(a+3)4-120
tách ra là ổn
cách 2 : áp dụng BĐT bunyakovsky:
(1+1)(a2+b2)\(\ge\)(a+b)2=> a2+b2\(\ge\)\(\frac{\left(a+b\right)^2}{2}\)(dấu = xảy ra khi a=b)
A= (x-1)4+(x+5)4-120=(1-x)4+(x+5)4-120\(\ge\)\(\frac{1}{2}\left[\left(x-1\right)^2+\left(x+5\right)^2\right]^2-120\)
\(A\ge\frac{1}{2}\left(2x^2+8x+26\right)^2-120=\frac{1}{2}\left[2\left(x+2\right)^2+18\right]^2-120\ge\frac{18^2}{2}-120=42\)
dấu = xảy ra khi 1-x=x+5 và x+2=0
=> x=-2
Ta có: (x-1)\(^4\) \(\ge\) 0 với mọi x
(x+5)\(^4\) \(\ge\) 0 với mọi x
\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) \(\ge\) 0 với mọi x
\(\Rightarrow\) (x-1)\(^4\) + (x+5)\(^4\) -120 \(\ge\) -120 với mọi x
=> A\(\ge\) -120
=> GTNN của A bằng -120