\(=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
Các b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(\Leftrightarrow A=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)

\(\Leftrightarrow A\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)

\(\Leftrightarrow A=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)x = 2015

Vậy GTNN của A = 2 tại x = 2015

10 tháng 3 2019

\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(\ge x-2014+0+2016-x=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2014\\x=2015\\x\le2016\end{cases}}\Leftrightarrow x=2015\) (thỏa mãn đồng thời cả ba trường hợp)

8 tháng 4 2018

Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x

\(\left|2015-x\right|\ge0\)với mọi giá trị của x

\(\left|2016-x\right|\ge0\)với mọi giá trị của x

=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x

=> GTNN của A là 0.

8 tháng 4 2018

Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2

Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0

TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0

=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )

TH2: Làm tương tự => loại

Có I 2015 -x I \(\ge\)

Dấu = xảy ra khi x = 2015

Vậy A min = 2 khi x = 2015

26 tháng 12 2016

giá trị nhỏ nhất là 0

vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0

dấu bằng xảy ra khi

x - 2013 = 0

x-2014=0

x-2015=0

vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức

28 tháng 12 2016

Gọi biểu thức trên là A

Ta thấy 

A=/x-2013/+/2014-x/+/x-2015/ sẽ lớn hơn hoặc bằng:

/x-2013+2014-x/=/1/=1

Min A=1

31 tháng 3 2017

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{MIN}=2\)

31 tháng 3 2017

Hình như bn làm sai rui Ace Legona ạ!!!!

Ta có N = | x - 2014 | + | 2015 -x | \(\le\) | x - 2014 + 2015 - x |

N \(\ge\left|1\right|\)

\(\Rightarrow N\ge1\)

N đạt GTNN của N = 1 khi \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x\ge0\end{matrix}\right.\)

Hoặc \(\left\{{}\begin{matrix}x-2014\le0\\2015-x\le0\end{matrix}\right.\)

* \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x\le2015\end{matrix}\right.\)

\(\Rightarrow2014\le x\le2015\) ( Thỏa mãn )

* \(\left\{{}\begin{matrix}x-2014\le0\\2015-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2014\\x\ge2015\end{matrix}\right.\)

\(\Rightarrow2014\le x\)\(x\ge2015\) ( loại )

=> N đạt GTNN N = 1 khi \(2014\le x\le2015\)

Chúc bn học tốt vui

16 tháng 1 2019

came ơn

16 tháng 7 2015

ĐTV sai òi

GTNN cảu P = 0 tại y = 2012 ; x = 4018 

GTNN của P = 2015 khi y= 1 ; x = 2

26 tháng 10 2016

a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

\(=\left|x-1\right|+\left|2-x\right|+2016\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)

Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)

b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)

Ta lại có: \(\left|x-2\right|\ge0\) (2)

Từ (1)(2) suy ra: \(B\ge2\)

Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)

24 tháng 2 2017

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

24 tháng 2 2017

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)