\(A=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\) với x, y, z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2016

Ta nhận thấy: X=Y=Z=4 thì A đạt gtnn (dựa vào đk)

\(\frac{X}{\sqrt{Y}}\)+\(k\sqrt{Y}\)>= \(2\sqrt{kX}\)(*)

Biểu thức trên xãy ra khi và chỉ khi \(\frac{X}{\sqrt{Y}}\)\(k\sqrt{Y}\)<=> \(\frac{4}{\sqrt{4}}\)\(k\sqrt{4}\)<=> k=1

Thế vào (*) \(\frac{X}{\sqrt{y}}\)\(\sqrt{y}\)>= 2\(\sqrt{X}\)(1)

Tương tự ta có: \(\frac{Y}{\sqrt{Z}}\)+\(\sqrt{Z}\) >= 2\(\sqrt{Y}\)(2)

                         \(\frac{Z}{\sqrt{X}}\)+\(\sqrt{X}\)>= 2\(\sqrt{Z}\)(3)

Lấy (1)+(2)+(3) ta được:

A + \(\sqrt{X}\)+\(\sqrt{Y}\)+\(\sqrt{Z}\)>= 2(\(\sqrt{X}\)+\(\sqrt{Y}\)+\(\sqrt{Z}\))

A >= \(\sqrt{X}\)+\(\sqrt{Y}\)+\(\sqrt{Z}\)= 6 (X=Y=Z=4)

GTNN A=6. Tại X=Y=Z=4

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

31 tháng 12 2015

Min \(3\sqrt{3}\Leftrightarrow x=y=z=3\) nhỉ

31 tháng 12 2015

xin lỗi nha mk chỉ có thể làm hóa 9 thui còn toán 9 thì http://botay.com.vn

25 tháng 12 2018

dùng talet đi

25 tháng 12 2018

banj làm giùm mình cái

15 tháng 9 2018

TA CÓ:

\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)

\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)

DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 9 2018

\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\) 

\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\) 

\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\) 

Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)