![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=x^2+2y^2=3x-y+6\)
\(A=\left(x^2+3x+\frac{9}{4}\right)+\left(2y^2-y+\frac{1}{8}\right)+\frac{29}{8}\)
\(A=\left(x+\frac{3}{2}\right)^2+\left(\sqrt{2}y-\frac{1}{2\sqrt{2}}\right)^2+\frac{29}{8}\ge\frac{29}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\\sqrt{2}y=\frac{1}{2\sqrt{2}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}}\)
Vậy \(Min_A=\frac{29}{8}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}\)
b) \(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)
Để B min \(\Leftrightarrow\frac{2}{x^2+1}\)max \(\Leftrightarrow x^2+1\)min
Mà \(x^2+1\ge1\)
Dấu " = " xảy ra : \(\Leftrightarrow x=0\)
Vậy \(Min_B=-1\Leftrightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)
Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10
Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5
Dấu bằng xảy ra khi và chỉ khi x=y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(8=xyz\le\frac{\left(x+y+z\right)^3}{27}\)
\(\Leftrightarrow a=x+y+z\ge6\)
Ta có:
\(A\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(x+y+z\right)+12}\)
\(\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+12}=\frac{a^2}{\frac{a^2}{3}+2a+12}=\frac{3a^2}{a^2+6a+36}\)
Ta chứng minh:
\(\frac{3a^2}{a^2+6a+36}\ge1\)
\(\Leftrightarrow\left(a-6\right)\left(a+3\right)\ge0\)(đúng)
Vậy ta có ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$A=x^2+2y^2+3x-y+6$
$\Leftrightarrow x^2+3x+(2y^2-y+6-A)=0(*)$
Coi đây là PT bậc 2 ẩn $x$
Vì $A$ xác định nên $(*)$ luôn có nghiệm.
$\Rightarrow \Delta'=9-4(2y^2-y+6-A)\geq 0$
$\Leftrightarrow A\geq 8y^2-4y+15$
Mà $8y^2-4y+15=8(y-\frac{1}{4})^2+\frac{29}{2}\geq \frac{29}{2}$
$\Rightarrow A\geq \frac{29}{2}$ hay $A_{\min}=\frac{29}{2}$
------------------
\(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)
$x^2\geq 0\Rightarrow x^2+1\geq 1\Rightarrow \frac{2}{x^2+1}\leq 2$
$\Rightarrow B=1-\frac{2}{x^2+1}\geq 1-2=-1$
Vậy $B_{\min}=-1$
-------------
ĐK: $x\neq 1$
\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-(x-1)+1}{x^2-2x+1}=1-\frac{1}{x-1}+\frac{1}{(x-1)^2}\)
\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy $C_{\min}=\frac{3}{4}$
\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-x+1+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=1-\frac{1}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(\frac{1}{x-1}=c\)
\(\Rightarrow\) \(C=c^2-c+1\)
\(=c^2-2.c.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) \(\forall c\)
Vậy GTNN của C là \(\frac{3}{4}\)
Dấu '' = '' xảy ra khi \(c=\frac{1}{2}\Leftrightarrow\frac{1}{x-1}=\frac{1}{2}\Leftrightarrow3\)