\(A=\frac{x^2+2x+9}{-2y-y^2+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2020

a) \(A=x^2+2y^2=3x-y+6\)

\(A=\left(x^2+3x+\frac{9}{4}\right)+\left(2y^2-y+\frac{1}{8}\right)+\frac{29}{8}\)

\(A=\left(x+\frac{3}{2}\right)^2+\left(\sqrt{2}y-\frac{1}{2\sqrt{2}}\right)^2+\frac{29}{8}\ge\frac{29}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\\sqrt{2}y=\frac{1}{2\sqrt{2}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}}\)

Vậy \(Min_A=\frac{29}{8}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}\)

b) \(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)

Để B min \(\Leftrightarrow\frac{2}{x^2+1}\)max \(\Leftrightarrow x^2+1\)min

Mà \(x^2+1\ge1\)

Dấu " = " xảy ra : \(\Leftrightarrow x=0\)

Vậy \(Min_B=-1\Leftrightarrow x=0\)

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

18 tháng 12 2018

Bạn nhân biểu thức lên 2 lần (mình đặt là A nên nhân 2 lần là 2A)

Nhóm theo hằng đảng thức ta được (x-y)^2 +(x-2)^2 +(y-2)^2 +10 

Bạn chứng minh nó luôn lớn hơn hoặc bằng 10 với mọi x,y vì mỗi bình phương luôn lớn hơn 0 và công 10 nên lớn hơn hoặc bằng 10 => 2A>=10 => A>= 5 

Dấu bằng xảy ra khi và chỉ khi x=y=2

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

6 tháng 5 2019

Ta có:

\(8=xyz\le\frac{\left(x+y+z\right)^3}{27}\)

\(\Leftrightarrow a=x+y+z\ge6\)

Ta có:

\(A\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(x+y+z\right)+12}\)

\(\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+12}=\frac{a^2}{\frac{a^2}{3}+2a+12}=\frac{3a^2}{a^2+6a+36}\)

Ta chứng minh:

\(\frac{3a^2}{a^2+6a+36}\ge1\)

\(\Leftrightarrow\left(a-6\right)\left(a+3\right)\ge0\)(đúng)

Vậy ta có ĐPCM

6 tháng 5 2019

Èo ngược dấu đoạn cuối mất rồi. Sorry nhìn nhầm

AH
Akai Haruma
Giáo viên
26 tháng 6 2020

Lời giải:
$A=x^2+2y^2+3x-y+6$

$\Leftrightarrow x^2+3x+(2y^2-y+6-A)=0(*)$

Coi đây là PT bậc 2 ẩn $x$

Vì $A$ xác định nên $(*)$ luôn có nghiệm.

$\Rightarrow \Delta'=9-4(2y^2-y+6-A)\geq 0$

$\Leftrightarrow A\geq 8y^2-4y+15$

Mà $8y^2-4y+15=8(y-\frac{1}{4})^2+\frac{29}{2}\geq \frac{29}{2}$

$\Rightarrow A\geq \frac{29}{2}$ hay $A_{\min}=\frac{29}{2}$
------------------

\(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)

$x^2\geq 0\Rightarrow x^2+1\geq 1\Rightarrow \frac{2}{x^2+1}\leq 2$

$\Rightarrow B=1-\frac{2}{x^2+1}\geq 1-2=-1$

Vậy $B_{\min}=-1$

-------------

ĐK: $x\neq 1$

\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-(x-1)+1}{x^2-2x+1}=1-\frac{1}{x-1}+\frac{1}{(x-1)^2}\)

\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy $C_{\min}=\frac{3}{4}$

26 tháng 6 2020

\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-x+1+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=1-\frac{1}{x-1}+\frac{1}{\left(x-1\right)^2}\)

Đặt \(\frac{1}{x-1}=c\)

\(\Rightarrow\) \(C=c^2-c+1\)

\(=c^2-2.c.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) \(\forall c\)

Vậy GTNN của C là \(\frac{3}{4}\)

Dấu '' = '' xảy ra khi \(c=\frac{1}{2}\Leftrightarrow\frac{1}{x-1}=\frac{1}{2}\Leftrightarrow3\)