Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2x^2+9}{x^2+4}=\frac{\left(2x^2+8\right)+1}{x^2+4}=\frac{2\left(x^2+4\right)+1}{x^2+4}=2+\frac{1}{x^2+4}\)
Ta thấy \(x^2\ge0\forall x\)
=> \(x^2+4\ge4\forall x\)
=> \(\frac{1}{x^2+4}\le\frac{1}{4}\forall x\)
=> \(A\le\frac{1}{4}+2=\frac{9}{4}\)
\(MaxA=\frac{9}{4}\Leftrightarrow x=0\)
1: (x2-4x+3)=(x-1)(x-3) lớn hơn or bằng 0
suy ra: x<=1 hoặc 3<=x
2: x3-2x2+3x-6=(x-2)(x2+3)<0
mà x2+3>0 =>x<2
3: x+2 lớn hơn hoặc bằng 0 => x lớn hơn hoặc bằng -2
4: =>x+2>0 và x-3<0 => -2<x<3
1, \(x^2-4x+3\ge0\Leftrightarrow\left(x-3\right)\left(x-1\right)\ge0\)
TH1 : \(\hept{\begin{cases}x-3\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\ge1\end{cases}\Leftrightarrow}x\ge3}\)
TH2 : \(\hept{\begin{cases}x-3\le0\\x-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\le1\end{cases}\Leftrightarrow}x\le1}\)
Vậy BFT có tập nghiệm là S = { x | x =< 1 ; x >= 3 }
2, \(x^3-2x^2+3x-6< 0\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x-2\right)< 0\Rightarrow x-2< 0\)vì \(x^2+3>0\forall x\)
\(\Leftrightarrow x< 2\)Vậy BFT có tập nghiệm là S = { x | x < 2 }
\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)
\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)
\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)
\(=\frac{2005\times2010-6}{2005\times2011}\)
\(=\frac{2004}{2005}\)
a) \(A=2x^2+2x+3\)
\(A=2\left(x^2+x+\frac{3}{2}\right)\)
\(A=2\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left[\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right]\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
b) Biến đổi mẫu thức :
\(3x^2+4x+15\)
\(=3\left(x^2+\frac{4}{3}x+5\right)\)
\(=3\left[x^2+2\cdot x\cdot\frac{2}{3}+\left(\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left[\left(x+\frac{2}{3}\right)^2+\frac{41}{9}\right]\)
\(=3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}\)
\(B=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\ge\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{2}{3}=0\Leftrightarrow x=\frac{-2}{3}\)
c) \(C=-x^2+2x-2\)
\(C=-\left(x^2-2x+2\right)\)
\(C=-\left(x^2-2\cdot x\cdot1+1^2+1\right)\)
\(C=-\left[\left(x-1\right)^2+1\right]\)
\(C=-1-\left(x-1\right)^2\le-1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Biến đổi mẫu thức tương tự câu b)
\(P=\frac{xy}{\left|xy\right|}+\frac{x-y}{\left|x-y\right|}\cdot\left(\frac{x}{\left|x\right|}-\frac{y}{\left|y\right|}\right)\)
TH1: \(x,y>0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+1\cdot\left(1-1\right)=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{x}-\frac{y}{y}\right)=1+\left(-1\right)\cdot\left(1-1\right)=1\)
TH2: \(x,y< 0\)
+) Xét \(x>y\): \(P=\frac{xy}{xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1+1\cdot\left[-1-\left(-1\right)\right]=1\)
+) Xét \(x< y\): \(P=\frac{xy}{xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{-y}\right)=1\)
TH3: \(x>0;y< 0\): \(P=\frac{xy}{-xy}+\frac{x-y}{x-y}\cdot\left(\frac{x}{x}-\frac{y}{-y}\right)=-1+1\cdot\left(1+1\right)=1\)
TH4: \(x< 0;y>0\): \(P=\frac{xy}{-xy}+\frac{x-y}{y-x}\cdot\left(\frac{x}{-x}-\frac{y}{y}\right)=-1+\left(-1\right)\cdot\left(-1-1\right)=1\)
Nói chung với mọi x, y thì P = 1
\(\frac{3x^2-8x+13}{x^2+5}=\frac{x^2+5+2x^2-8x+8}{x^2+5}=1+\frac{2\left(x^2-4x+4\right)}{x^2+5}=1+\frac{2\left(x-2\right)^2}{x^2+5}\ge1\)
Dấu \(=\)xảy ra khi \(x-2=0\Leftrightarrow x=2\).
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)