Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{a}{b}+\frac{a}{c}\right)\ge9\)
Trong đó: a=xy; b=yz; c=zx
\(\Rightarrow\left(xy+yz+zx\right)\left(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge9\)(*)
Áp dụng BĐT Cô-si
\(x^2+y^2\ge2xy\left(x>0;y>0\right)\left(1\right)\)
\(y^2+z^2\ge2yz\left(y>0;z>0\right)\left(2\right)\)
\(z^2+x^2\ge2xz\left(x>0;z>0\right)\left(3\right)\)
Cộng từng vế của (1);(2);(3) ta được: \(x^2+y^2+z^2\ge xy+yz+zx\)(**)
Từ (*);(**)
\(\Rightarrow\left(x^2+y^2+z^2\right)\cdot A\ge\left(xy+yz+zx\right)\cdot A\ge9\)
\(\Rightarrow3A\ge9\)
\(\Rightarrow A\ge3\)
\(\Rightarrow MinA=3\Leftrightarrow x=y=z\)
Bài 1:a,
A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc
Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2
b,làm tt câu a
bài này esay thôi:
ta có \(x+y+z\le3\Leftrightarrow\left(x+y+z\right)^2\le9.\)
Ta lại có:\(\left(x+y+z\right)^2\ge3\left(xy+zx+zy\right)\)
\(\Leftrightarrow9\ge3\left(xy+yz+xz\right)\Leftrightarrow3\ge xy+xz+yz\)
Ta có:
\(VT=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+zx+zy}+\frac{1}{xy+yz+xz}+\frac{2010}{xy+xz+yz}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2010}{xy+yz+xz}\)\(\ge\frac{9}{3^2}+\frac{2010}{3}=1+670=671\left(đpcm\right).\)
Dấu = xay ra khi \(x=y=z=1\)
Cho mình hỏi lầu trên cái, esay là gì thế? Bạn đánh nhầm từ easy phải không?
Ta có
\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(=\left(\frac{1}{x^2+y^2+z^2}+\frac{\frac{4}{9}}{2xy}+\frac{\frac{4}{9}}{2yz}+\frac{\frac{4}{9}}{2zx}\right)+\frac{7}{9}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)
\(\ge\frac{\left(1+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{9}.\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{9}.\frac{9}{\frac{\left(x+y+z\right)^2}{3}}\)
\(=9+\frac{7}{9}.27=30\)
Vậy GTNN là 30 đạt được khi \(x=y=z=\frac{1}{3}\)
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)