\(A=\dfrac{\left(x+4\right).\left(x+9\right)}{x}\) với x>0
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2021

\(A=x+13+\dfrac{36}{x}=\left(x+\dfrac{36}{x}\right)+13\ge2\sqrt{\dfrac{x.36}{x}}+13=12+13=25.\text{ Dấu }"="\text{ xảy ra khi: }x=\dfrac{36}{x}\text{ hay: }x=6\)

Ta có: \(A=\dfrac{x^2+13x+36}{x}=\dfrac{25x+x^2-12x+36}{x}\) \(=\dfrac{25x+\left(x-6\right)^2}{x}=25+\dfrac{\left(x-6\right)^2}{x}\ge25\)

Dấu bằng xảy ra \(\Leftrightarrow x=6\)

 Vậy \(Min_A=25\) khi \(x=6\)

19 tháng 3 2017

\(A=\dfrac{\left(x+16\right)\left(x+9\right)}{x}\)

\(A=\dfrac{x^2+25x+144}{x}\)

Vì x>0 nên ta được quyền rút gọn

\(A=x+25+\dfrac{144}{x}\)

Vì x>0 nên \(\dfrac{144}{x}>0\)

Áp dụng BĐT AM-GM cho \(x+\dfrac{144}{x}\left(x>0\right)\), ta có:

\(\dfrac{x+\dfrac{144}{x}}{2}\ge\sqrt{\dfrac{x.144}{x}}\)

\(x+\dfrac{144}{x}\ge2.\sqrt{144}\)

\(x+\dfrac{144}{x}\ge24\)

\(A=x+\dfrac{144}{x}+25\ge24+25\)

Vậy MinA =49 khi \(x=\dfrac{144}{x}\)

\(x=\dfrac{144}{x}\)

\(x^2=144\)

\(x=\pm12\)

Chọn nghiệm x=12 ( x>0)

Vậy: MinA=49 khi x=12

1 tháng 7 2019

\(A=\left(a+2b-5+b\right)^2-2ab+34=\left(a+2b-5\right)^2+2b\left(a+2b-5\right)+b^2-2ab+34\)

\(A=\left(a+2b-5\right)^2+5b^2-10b+5+29\)

\(A=\left(a+2b-5\right)^2+5\left(b-1\right)^2+29\ge29\)

\(A_{min}=29\) khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)

\(B=x+\frac{25}{x}-8\ge2\sqrt{x.\frac{25}{x}}-8=2\)

\(B_{min}=2\) khi \(x=5\)

\(C=\frac{x^2-15x+36}{x}=x+\frac{36}{x}-15\ge2\sqrt{x.\frac{36}{x}}-15=-3\)

\(C_{min}=-3\) khi \(x=6\)

1 tháng 7 2019

Cảm on bn nhiều nhé

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Lời giải:

a) Nếu không điều kiện gì của $x$ thì biểu thức không có GTNN

vì cho $x$ chạy từ \(-100\) đến âm vô cùng thì giá trị $A$ càng nhỏ (âm) vô cùng

b) Điều kiện: \(x>0\)

\(B=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^6+\frac{1}{x^6} \right )-2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left ( x+\frac{1}{x} \right )^6-\left [ (x^3+\frac{1}{x^3})^2-2 \right ]-2}{\left ( x+\frac{1}{x}\right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)

\(=\frac{\left ( x+\frac{1}{x} \right )^6-\left ( x^3+\frac{1}{x^3} \right )^2}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}=\frac{\left [ \left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right ) \right ]\left [ \left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right ) \right ]}{\left ( x+\frac{1}{x} \right )^3+\left ( x^3+\frac{1}{x^3} \right )}\)

\(=\left ( x+\frac{1}{x} \right )^3-\left ( x^3+\frac{1}{x^3} \right )=\left ( x+\frac{1}{x} \right )^3-\left [ \left ( x+\frac{1}{x} \right )^3-3.x.\frac{1}{x}\left ( x+\frac{1}{x} \right ) \right ]\) (sd hằng đẳng thức đáng nhớ \(x^3+y^3=(x+y)^3-3xy(x+y)\) )

\(=3\left(x+\frac{1}{x}\right)\geq 3.2\sqrt{x.\frac{1}{x}}=6\) (theo BĐT Cô-si cho hai số dương)

Vậy \(B_{\min}=6\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ x>0\end{matrix}\right.\Leftrightarrow x=1\)

Bài 6

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(=\left(a^2+2ab+b^2\right)-4ab\)

\(=\left(a+b\right)^2-4ab\)

Bài 5 :

\(a,16x^2-\left(4x-5\right)^2=15\)

\(16x^2-16x^2+40x-25-15=0\)

\(40x-40=0\)

\(40x=40\)

\(x=1\)

\(b,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(4x^2+12x+9-4x^2+4=49\)

\(12x=36\)

\(x=3\)

\(c,\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)

\(4x^2-1+1-4x+4x^2=18\)

\(8x^2-4x-18=0\)

\(2\left(4x^2-2x-9\right)=0\)

\(x=\frac{1-\sqrt{37}}{4}\)

\(d,2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(2x^2+4x+2-x^2+9-x^2+8x-16=0\)

\(12x=4\)

\(x=\frac{1}{3}\)

11 tháng 3 2020

a) A có nghĩa\(\Leftrightarrow\hept{\begin{cases}2-x\ne0\\2+x\ne0\\x-3\ne0\end{cases}}\Rightarrow x\ne\pm2;x\ne3\)

\(A=\left(\frac{2+x}{2-x}-\frac{2-x}{2+x}-\frac{4x^2}{x^2-4}\right):\frac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)

\(=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{4-x^2}:\frac{\left(x-3\right)^2}{\left(2-x\right)\left(x-3\right)}\)

\(=\frac{x^2+4x+4-4+4x-x^2+4x^2}{4-x^2}:\frac{x-3}{2-x}\)

\(=\frac{4x^2+8x}{4-x^2}.\frac{2-x}{x-3}\)

\(=\frac{4x\left(x+2\right)}{\left(2+x\right)\left(x-3\right)}=\frac{4x}{x-3}\)

b) \(A=1\Leftrightarrow4x=x-3\Leftrightarrow x=-1\)

c) \(A>0\Leftrightarrow\frac{4x}{x-3}>0\)

TH1: \(\hept{\begin{cases}4x>0\\x-3>0\end{cases}}\Leftrightarrow x>3\)

TH2: \(\hept{\begin{cases}4x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)

Giúp mình với đúng mik tích cho :>>

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận