Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cau a la 1
Cau b la 1215
Cau c la 768
Cau d la \(\frac{4185}{13}\)
\(\frac{4^2.4^3}{2^{10}}=\frac{4^{2+3}}{\left(2^2\right)^5}=\frac{4^5}{4^5}=1\)
\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=1215\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^2.2^5.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^2.2^5.3^6}{2^5.3^5.2^6}=\frac{3}{2^4}=\frac{3}{16}\)
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.\left(2.3\right)^2+3^3}{-13}=\frac{2^3.3^3+3.2^2.3^2+3^3}{-13}=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\left(-3\right)^3=-27\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
\(\Rightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Rightarrow7x-21=5x+25\)
\(\Rightarrow7x-5x=21+25\)
\(\Rightarrow2x=46\)
\(\Rightarrow x=23\)
Vậy \(x=23\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
\(\Rightarrow\left(x-1\right).\left(x+1\right)=7.9\)
\(\Rightarrow\left(x-1\right)x-\left(x+1\right)=7.9\)
\(\Rightarrow x^2-x-x-1=63\)
\(\Rightarrow x^2-1=63\)
\(\Rightarrow x^2=64\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
Vậy \(x=8\) hoặc \(x=-8\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10\)
+) \(x+4=10\Rightarrow x=6\)
+) \(x+4=-10\Rightarrow x=-16\)
Vậy \(x\in\left\{6;-16\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a đề thiếu vế phải rồi bạn
b: \(\Leftrightarrow x\cdot0+1=0\)
=>0x+1=0(vô lý)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 24-x=32=25
=> 4-x=5
<=> x=-1
b, (x+1,5)2+(y-2,5)10=0
Vì (x+1,5)2\(\ge\)0, (y-2,5)10\(\ge\)0
\(\Rightarrow\hept{\begin{cases}x+1,5=0\\y-2,5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=2,5\end{cases}}}\)
a)\(2^{4-x}\)=32
=>\(2^{4-x}\)=32=\(2^5\)
=>4-x=5
=>x=4-5=-1
=>x=-1
\(A=5.\left(x-7\right)^2+34\)
Ta có: \(\left(x-7\right)^2\ge0\) \(\forall x.\)
\(\Rightarrow5.\left(x-7\right)^2\ge0\) \(\forall x.\)
\(\Rightarrow5.\left(x-7\right)^2+34\ge34\) \(\forall x.\)
\(\Rightarrow A\ge34.\)
Dấu '' = '' xảy ra khi:
\(\left(x-7\right)^2=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=0+7\)
\(\Rightarrow x=7.\)
Vậy \(MIN_A=34\) khi \(x=7.\)
Chúc bạn học tốt!
Câu C có thể lập bảng xét dấu