\(\sqrt{x}\)+3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

Ta có: 

\(A=2x-\sqrt{x}+3\)  biết \(\sqrt{x}\ge0\left(\forall x\right)\)

\(\Rightarrow A\ge3\).

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)

Vậy Max A = 3 khi x = 0.

27 tháng 7 2017

1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)

ĐKXĐ : \(2\le x\le4\)

\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Áp dụng bđt AM - GM ta có : 

\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)

Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2

=> A = \(\sqrt{2}\)

Vậy \(\sqrt{2}\le A\le2\)

30 tháng 8 2016

ĐK: \(\hept{\begin{cases}-2\le x\le6\\-1\le x\le3\end{cases}}\Leftrightarrow-1\le x\le3\)

Thử bằng máy tính với \(x=-1;0;1;2;3\) thì thấy \(x=0\) thì A có giá trị nhỏ nhất so với các giá trị còn lại.

Từ đó ta có thể thử: 

Chứng minh \(A\ge A\left(3\right)\) hay \(A\ge\sqrt{3}\)

\(\Leftrightarrow\sqrt{-x^2+4x+12}\ge\sqrt{3}+\sqrt{-x^2+2x+3}\)

\(\Leftrightarrow-x^2+4x+12\ge3-x^2+2x+3+2\sqrt{3}\sqrt{-x^2+2x+3}\)

\(\Leftrightarrow x+3\ge\sqrt{3\left(-x^2+2x+3\right)}\)

\(\Leftrightarrow x^2+6x+9\ge-3x^2+6x+9\)(tương đương được vì \(x+3\ge-1+3>0\))

\(\Leftrightarrow4x^2\ge0\)

Do bđt cuối đúng nên bđt cần chứng minh là đúng.

Vậy Min A = 3 khi x = 0.

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

29 tháng 7 2021

Trả lời:

a, \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-3}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) \(\left(đkxđ:x\ge0;x\ne9\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}}{x-9}+\frac{2x+3\sqrt{x}-9}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}+2x+3\sqrt{x}-9-2x+\sqrt{x}+3}{x-9}\)

\(=\frac{x+\sqrt{x}-6}{x-9}\)

NM
23 tháng 8 2021

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

11 tháng 12 2016

\(x^2+3-x^2\ge2\sqrt{x^2\left(3-x^2\right)}\)

\(3\ge2x\sqrt{3-x^2}\)

\(min\)\(p=3\)

XAY RA KHI \(x^2=3-x^2\)

HAY \(x=\sqrt{\frac{3}{2}}\)

12 tháng 12 2016

Điều kiện xác định: \(3-x^2\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)

Ta có

\(P^2=4x^2.\left(3-x^2\right)=-4x^4+12x^2\)

\(=\left(-4x^4+12x^2-9\right)+9=9-\left(2x^2-3\right)^2\le9\)

\(\Rightarrow-3\le P\le3\)

Vậy GTNN là - 3 đạt được khi \(x=-\sqrt{\frac{3}{2}}\)

GTLN là 3 đạt được khi \(x=\sqrt{\frac{3}{2}}\)

PS: Khuyến mãi luôn GTLN cho bạn đó