Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biến đổi tương đương A = \((x^2-6x+9)+(y^2-22y+121)+(z^2+12z+36)\)\(+2019\)
=> A = \((x-3)^2+(y-11)^2+(z+6)^2+2019\ge2019\)
VẬY GTNN CỦA A LÀ 2019 ĐẠT ĐƯỢC TẠI x=3 , y=11,z=-6
\(x^2+y^2+z^2-6x-22y+12z+166=0\)
\(\Leftrightarrow x^2+y^2+z^2-6x-22y+12z+121+9+36=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-22y+121\right)+\left(z^2+12z+36\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-11\right)^2+\left(z+6\right)^2=0\)
\(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y-11\right)^2\ge0\\\left(z+6\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-11\right)^2=0\\\left(z+6\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-11=0\\z+6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=11\\z=-6\end{cases}}\)
\(A=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(A_{min}=2\) tại \(x=-3;y=1\)
Phần 1:
Ta thấy: \(B=x^2+2xy+y^2+16=\left(x+y\right)^2+16\)
Do \(\left(x+y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(x+y\right)^2+16\ge16\) ( mọi x và y )
=> GTNN của biểu thức \(B=\left(x+y\right)^2+16\) bằng 16 khi và chỉ khi:
\(\left(x+y\right)^2=0\)
\(\Rightarrow x+y=0\)
\(\Rightarrow x=-y\)
Vậy GTNN của biểu thức \(B=x^2+2xy+y^2+16\) bằng 16 khi và chỉ khi \(x=-y\).
Phần 2:
Ta thấy: \(C=9x^2+6x+y^2+16=9x^2+6x+1+y^2+15=\left(3x+1\right)^2+y^2+15\)
Do \(\left(3x+1\right)^2\ge0\) ( mọi x )
\(y^2\ge0\) ( mọi y )
\(\Rightarrow\left(3x+1\right)^2+y^2\ge0\) ( mọi x và y )
\(\Rightarrow\left(3x+1\right)^2+y^2+15\ge15\) ( mọi x và y )
=> GTNN của \(C=\left(3x+1\right)^2+y^2+15\) bằng 15 khi và chỉ khi:
\(\left(3x+1\right)^2+y^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+1\right)^2=0\\y^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+1=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=0\end{cases}}\)
Vậy GTNN của biểu thức \(C=9x^2+6x+y^2+16\) bằng 15 khi và chỉ khi \(x=\frac{-1}{3}\) ; \(y=0\).
\(A=x^2+2xy+y^2+16=\left(x+y\right)^2+16\ge16\forall x\)Vậy Min A = 16 khi \(x+y=0\Rightarrow x=-y\)
\(B=9x^2+6x+y^2+4x+16=\left(9x^2+6x+1\right)+\left(y^2+4x+4\right)+11\)
\(=\left(3x+1\right)^2+\left(y+2\right)^2+11\ge11\forall x\)
Vậy Min B = 11 khi \(\left\{{}\begin{matrix}3x+1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=-2\end{matrix}\right.\)
\(C=4x^2+4x+5y^2+5y=\left(4x^2+4x+1\right)+5\left(y^2+y+\dfrac{1}{4}\right)-\dfrac{9}{4}\)\(=\left(2x+1\right)^2+5\left(y+\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
Vậy Min C = \(\dfrac{9}{4}\) khi \(\left\{{}\begin{matrix}2x+1=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=1
b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)
Dấu "=" xảy ra khi x=1/3
c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)
\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)
Dấu "=" xảy ra khi x=5/6
mấy câu sau tương tự
a)\(2x^2+y^2+4x-2y-2xy+10=2x^2+y^2+4x-2y\left(x+1\right)+10\)
\(=y^2-2y\left(x+1\right)+2\left(x^2+2x+1\right)+8\)
\(=y^2-2y\left(x+1\right)+2\left(x+1\right)^2+8\)
\(=\left(y+x+1\right)^2+\left(x+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi x=-1 và y=0
A= X^2- 6X +9 + y^2 -22y + 121+ z^2+12z+ 36+2019
= (x-3)2+(y-11)2+(z+6)2+2019
Lại có (x-3)2+(y-11)2+(z+6)2\(\ge\)0
=> A\(\ge\)2019
Vậy Min A = 2019 <=> x= 3; y=11; z= -6