Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
a) đk: \(x\ge0;x\ne\left\{\frac{1}{4};1\right\}\)
\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\left[\frac{\left(2x+\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{x-1}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{\left(x-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)
b) Ta có:
\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)-1}{x+\sqrt{x}+1}=1-\frac{1}{x+\sqrt{x}+1}\)
Mà \(x+\sqrt{x}\ge0\left(\forall x\right)\)
\(\Leftrightarrow x+\sqrt{x}+1\ge1\left(\forall x\right)\)
\(\Leftrightarrow\frac{1}{x+\sqrt{x}+1}\le1\left(\forall x\right)\)
\(\Leftrightarrow P=1-\frac{1}{x+\sqrt{x}+1}\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x+\sqrt{x}=0\Leftrightarrow x=0\)
Vậy Min(P) = 0 khi x = 0
ĐK: \(x\ge0\)
\(A=\sqrt{x}+1+\frac{1}{\sqrt{x}}=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+1\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}+1=3\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\)
Vậy min A = 3 tại x = 1.