![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo mình nghĩ thì phải là giá trị lớn nhất
A=-(x^2-4x+5)
A=-[(x-2)^2+1]
Mà (x-2)^2+1>=1
Nên A<=-1
B=-(x^2+6x-1)
B=-[(x+3)^2-10]
nên B<=10
C=-(x^2+3x+2)
C=-(x^2+3x+9/4-1/4)
C=-[(x+3/2)^2-1/4]
Nên C<=1/4
D=-(2x^2-3x+1)
D=-2(x^2-3x/2+1/2)
D=-2(x^2-3x/2+9/16-1/16)
D=-2[(x-3/2)^2-1/16]
Nên D<=1/8
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì: \(\left(x+1\right)^2\ge0\) , với mọi x
=> \(\left(x+1\right)^2+1\ge1\)
Vậy GTNN của bt đã cho là 1 khi \(x+1=0\Leftrightarrow x=-1\)
b) \(4x^2-x+1=4\left(x^2-\frac{x}{4}+\frac{1}{64}\right)+\frac{15}{16}=4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\)
Vì: \(4\left(x-\frac{1}{8}\right)^2\ge0\), vói mọi x
=> \(4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
Vậy GTNN của bt trên là \(\frac{15}{16}\) khi \(x=\frac{1}{8}\)
c) \(3x^2-2x+1=3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{2}{3}=3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\)
Vì: \(3\left(x-\frac{1}{3}\right)^2\ge0\), với mọi x
=> \(3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Vậy GTNN của bt đã cho là \(\frac{2}{3}\) khi \(x=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,A=x^2+2x-3=\left(x^2+2x+1\right)-4=\left(x+1\right)^2-4\ge-4\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_A=-4\Leftrightarrow x=-1\)
\(b,B=2x^2-x+1=-\left(x^2-2x+1\right)+2=-\left(x-1\right)^2+2\le2\)
Dấu = xảy ra \(\Leftrightarrow x=1\)
Vậy \(Max_B=2\Leftrightarrow x=1\)
\(c,C=-3x^2+3x+1=-3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=-3\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\le\dfrac{7}{4}\)
Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(Max_C=\dfrac{7}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(d,D=-4x^2+2x+3=-4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)+\dfrac{13}{4}=-4\left(x-\dfrac{1}{4}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)
\(Max_D=\dfrac{13}{4}\Leftrightarrow x=\dfrac{1}{4}\)
-Tìm GTNN :
a) A= (x2 + 2.x.1 + 12) - 4 = (x + 1)2 - 4
Do (x+1)2 ≥ 0 ⇒ (x+1)2 - 4 ≥ (-4)
⇒ A đạt GTNN ⇔ (x+1)2 = 0 ⇒ x+1= 0 ⇒ x= -1
Vậy A đạt GTNN là -4 ⇔ x= -1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
b) \(=\left[\left(3x^3+1\right)^2-\left(3x\right)^2\right]-\left(3x^2+1\right)^2\)
\(=-\left(3x\right)^2=9x^2\)
c)\(=\left[\left(2x^2+1\right)^2-\left(2x\right)^2\right]-\left(2x^2+1\right)^2\)
\(=-\left(2x\right)^2=4x^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1
a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA=-9/8 khi x=-1/4
b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)
Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)
Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0
Vậy minB=1 khi x=y=0
lý luận tương tự bài 1, bài này mình làm tắt
Bài 2:
a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)
\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)
Dấu "=" xảy ra khi x=5/6
b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)
\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)
Dấu "=" xảy ra khi x=y=0
![](https://rs.olm.vn/images/avt/0.png?1311)
-3x2+2x-5= -3x2 +2x \(-\frac{1}{3}-\frac{14}{3}\)= - ( \(\sqrt{3}x-\frac{1}{\sqrt{3}}\))2 -14/3 \(\le\)-14/3
GTLN là -14/3 khi và chỉ khi \(\sqrt{3}x-\frac{1}{\sqrt{3}}\)=0 tương đương với x = \(\frac{1}{3}\)
4x2-70x+19 = 4x2-70x +\(\frac{1225}{4}\)-287.25= (2x-\(\frac{35}{2}\))2-287.25\(\ge\)-287.25
GTNN là -287.25 khi vài chỉ khi 2x-\(\frac{35}{2}\)=0 tương đương với x=\(\frac{35}{4}\)
Nhớ chọn mik nha :)
A = 3x^2 + 2x = 3(x^2+2.x.1/3+1/9) + 2/3 = 3(x+1/3)^2 + 2/3
Min A = 2/3, khi x = -1/3
B = 4x^2-3x+1 = (4x^2-2.2x.3/4+9/16) + 7/16 = (2x-3/4)^2 + 7/16
Min B = 7/16, khi x = 3/8
A = 3x^2 + 2x = 3﴾x^2+2.x.1/3+1/9﴿ + 2/3 = 3﴾x+1/3﴿^2 + 2/3
Min A = 2/3, khi x = ‐1/3
B = 4x^2‐3x+1 = ﴾4x^2‐2.2x.3/4+9/16﴿ + 7/16 = ﴾2x‐3/4﴿^2 + 7/16
Min B = 7/16, khi x = 3/8