Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2(2x + 3)2 + 5
vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5
A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)
c, Vì |4 - 1/2x| > 0
=> |4 - 1/2x| - 1/4 > -1/4
=> C > -1/4
Dấu "=" xảy ra
<=> |4 - 1/2x| = 0
<=> 4 - 1/2x = 0
<=> 1/2x = 4
<=> x = 8
KL: Cmin = -1/4 <=> x = 8
Lời giải:
$A=(2x+5)^4+3$
Ta thấy: $(2x+5)^4\geq 0$ với mọi $x$
$\Rightarrow A=(2x+5)^4+3\geq 0+3=3$
Vậy $A_{\min}=3$
Giá trị này đạt được khi $2x+5=0\Leftrightarrow x=\frac{-5}{2}$
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
ta có /2x-5/ lớn hơn hoặc =0
mà để A nhỏ nhất =>/2x-5/=0
vậy GTNN của A=0+3=3
A=|2x-5|+3
Ta có |2x-5|\(\ge\) với mọi x
=>|2x-5|+3\(\ge\)3
=>GTNN của A là 3 khi |2x-5|=0<=>2x-5=0<=>x=2.5
* Tìm GTLN :
Ta có :
\(A=\frac{2x+5}{2x-1}=\frac{2x-1+6}{2x-1}=\frac{2x-1}{2x-1}+\frac{6}{2x-1}=1+\frac{6}{2x-1}\)
Để A đạt GTLN thì \(\frac{6}{2x-1}\) phải đạt GTLN hay \(2x-1>0\) và đạt GTNN
\(\Rightarrow\)\(2x-1=1\)
\(\Rightarrow\)\(2x=2\)
\(\Rightarrow\)\(x=1\)
Suy ra : \(A=\frac{2x+5}{2x-1}=\frac{2.1+5}{2.1-1}=\frac{2+7}{2-1}=\frac{9}{1}=9\)
Vậy \(A_{max}=9\) khi \(x=1\)
Chúc bạn học tốt ~
Áp dụng BĐT: |a| + |b| \(\ge\) |a + b| . Dấu "=" xảy ra khi a.b \(\ge\) 0
Ta có A = |3 -2x| + |5 - 2x| + 3 = |3 - 2x| + |2x - 5| + 3 \(\ge\) |3 - 2x + 2x - 5| + 3 = 2 + 3 = 5
Dấu "=" xảy ra khi (3 - 2x).(2x - 5) \(\ge\) 0 hay (2x - 3). (2x - 5) \(\le\) 0
Vì 2x - 3 > 2x - 5 nên 2x - 3 \(\ge\) 0 và 2x - 5 \(\le\) 0
=> x \(\le\) 5/2 và x \(\ge\) 3/2 => 3/2 \(\le\) x \(\le\) 5/2
Vậy Min A = 5 khi 3/2 \(\le\) x \(\le\) 5/2
ta có
|3-2x|+|5-2x|+3=|2x-3|+|5-2x|+3\(\ge\)|2x-3+5-2x|+3=2+3=5
Vậy GTNN của |3-2x|+|5-2x|+3 là 5 tại:
2x-3\(\ge\)0 và 5-2x\(\ge\)0
=>x\(\ge\)3/2 và x\(\le\)5/2
=>3/2\(\le\)x\(\le\)5/2