Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
a) \(2x^2+y^2+4x-2y-2xy+10\)
\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)
\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)
.......................chắc không phải cách làm này đâu!
b) \(5x^2+y^2+2xy-4x\)
\(=x^2+4x^2+y^2+2xy-4x\)
\(=\left(x^2+2xy+y^2\right)+x^2-4x\)
\(\left(x+y\right)^2+x^2-4x\)
a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)
VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)
\(C=2x^2+2xy+y^2-2x+2y+1.\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+x^2-4x+4-4\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)
\(\text{Vậy }MinC=-2\text{. Dấu "=" xảy ra khi và chỉ khi }\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
\(C=2x^2+2xy+y^2-2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1+x^2-4x+4-4\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-4\ge-4\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}y=-3\\x=2\end{cases}}\)
Vậy GTNN của C là -4 khi \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
\(2x^2+y^2+2xy-6x-2y+10\)
\(=\left(x^2-4x+4\right)+\left(x^2+y^2+1+2xy-2y-2x\right)+5\)
\(=\left(x-2\right)^2+\left(x+y-1\right)^2+5\ge5\)
Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)
\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)
\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)
\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)
Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)
Chúc bạn học tốt ~
Đặt \(B=-x^2-2x-y^2-8y-10\)
\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)
\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)
\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)
Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)
Chúc bạn học tốt ~
A = x2 - 2xy + 3y2 - 2x + 1997
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 2y2 - 2y + 1/2 ) + 3991/2
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 2( y2 - y + 1/4 ) + 3991/2
= [ ( x - y )2 - 2( x - y ) + 12 ] + 2( y - 1/2 )2 + 3991/2
= ( x - y - 1 )2 + 2( y - 1/2 )2 + 3991/2 ≥ 3991/2 ∀ x, y
Dấu "=" xảy ra <=> x = 3/2 ; y = 1/2
=> MinA = 3991/2 <=> x = 3/2 ; y = 1/2
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(\Rightarrow2A=4x^2+4xy+2y^2-4x+4y+4\)
\(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right).1+1+y^2+6y+9-6\)
\(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y+3\right)^2-6\)
\(=\left(2x+y-1\right)^2+\left(y+3\right)^2-6\)
vì \(\left(2x+y-1\right)^2\ge0\forall x,y;\left(y+3\right)^2\ge0\forall y\)nên
\(2A=\left(2x+y-1\right)+\left(y+3\right)-6\ge-6\forall x,y\)
hay \(2A\ge-6\Rightarrow A\ge-3\Rightarrow minA=-3\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)